Return to search

Integral Measurement of Atmospheric Particulate Matter (PM)

Atmospheric aerosol particles also known as atmospheric particulate matter or particulate matter (PM) are microscopic particles (solid or liquid) suspended in air, which is one of six air pollutants in US air quality standard. PM is classified as coarse particles with diameters between 2.5 to 10 mm, fine particles with a diameter less than 2.5 mm (PM2.5), and ultrafine particles with the diameter less than 0.1 mm (PM0.1). Epidemiological studies have already showed the adverse health effects (such as asthma, lung cancer and respiratory and cardiovascular disease) resulted from exposure to the fine and ultrafine particles. Monitoring the PM concentration (i.e., either mass or surface area concentration of PM) is critical for the protection of public health and environment and for the regulatory control. Various PM sensors are now available in market. A majority of these PM sensors are optical sensors, whose readouts are highly depended on the physical property and composition of PM. Several PM monitors based on the measurement principle of electrical charging are also available. However, the empirical calibration of the readout of these electrical PM monitors via the use of standard dust particles makes it difficult to obtain the true mass concentration of PM when PM size distribution is different from that of standard dust.
The overall objective of this dissertation is to advance our scientific knowledge on the performance of cost-effective PM monitors for measuring either mass or surface area concentration of fine and ultrafine PM. This thesis includes two parts: (1) is on the evaluation of existing PM sensor for PM mass concentration measurement; (2) is on the development of new PM monitor for PM surface area concentration measurement. For the first part of this dissertation, four low-cost optical sensors, one Personal Dust Monitor (PDM) and DustrakTM were experimentally evaluated. Particles in the size distribution having different mean size, standard deviation value and material were used as test aerosol particles. The readouts of these low-cost and portable sensors are compared to that of a standard TEOM (Tapered Element Oscillation Microbalance). For the second part of this dissertation, a new electrical PM monitor, consisting of a corona-based aerosol charger, a precipitator and high sensitive current meter, has been proposed for measuring surface area concentration of fine and ultrafine PM. Particles are electrically charged upon entering an electrical PM monitor. Instead of using Faraday cage and current meter to measure the charges carried by particles in existed electrical PM sensors, the new PM monitor measures the current carried by particles deposited directly on the wall of the precipitator. A thorough evaluation has been carried out to evaluate the fundamental performance of this new PM monitor. In addition, small cyclones (i.e., quadru-inlet and tapered-body cyclones) were also evaluated as the size-selective inlet of these PM sensors/monitors to minimize the potential interface from the presence of PM with large sizes in the air. The small quadru-inlet cyclone is to resolve the issue of directional sampling; and the tapered-body cyclones is to reduce the cyclone pressure drop while having small cyclone cutoff particle size. Each cyclone has been evaluated via the measurement of particle penetration curve and pressure drop. Semi-empirical models have been obtained for the prediction of cyclone performance.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-6650
Date01 January 2018
CreatorsLiu, Di
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0022 seconds