Orientador: Carlos Roberto Minussi / Resumo: Esta pesquisa é dedicada ao desenvolvimento de uma metodologia para a realização do diagnóstico de distúrbios de tensão de sistemas de distribuição de energia elétrica, baseada no uso de sistemas imunológicos artificiais (SIA). Trata-se da proposição de um novo paradigma no ambiente dos SIA que confere o aprendizado de modo contínuo (plasticidade). Esta concepção permite compor um sistema de diagnóstico apto a aprender continuamente, contemplando novos tipos de distúrbios advindos da constante evolução do setor elétrico, sem a necessidade de reiniciar o processo de aprendizado. Neste contexto, empregam-se dois algoritmos imunológicos artificiais, sendo o algoritmo de seleção negativa, responsável pelo processo de reconhecimento de padrões, e o algoritmo de seleção clonal responsável pelo processo de aprendizado. A principal aplicação deste novo método é auxiliar na operação do sistema durante distúrbios, bem como, supervisionar o sistema de proteção, e estar apto a acompanhar a evolução dos sistemas elétricos adquirindo conhecimento continuamente. Para avaliar a eficácia e o desempenho deste novo método foram realizadas simulações de distúrbios de tensão em sistemas de distribuições de energia elétrica com 5, 33, 84 e 134 barras, no software ATP/EMTP. Os resultados obtidos com esta abordagem mostram robustez e eficiência quando comparados à literatura. / Doutor
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000875252 |
Date | January 2016 |
Creators | Lima, Fernando Parra dos Anjos. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira). |
Publisher | Ilha Solteira, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | f. |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0027 seconds