Return to search

Municipal-level estimates of child mortality for Brazil : a new approach using Bayesian statistics

Current efforts to measure child mortality for municipalities in Brazil are hampered by the relative rarity of child deaths, which often results in unstable and unreliable estimates. As a result, it is not possible to accurately assess true levels of child mortality for many areas, hindering efforts towards constructing and implementing effective policy initiatives for the reduction of child mortality. However, with a spatial smoothing process based upon Bayesian Statistics it is possible to “borrow” information from neighboring areas in order to generate more stable and accurate estimates of mortality in smaller areas. The objective of this study is to use this spatial smoothing process to derive estimates of child mortality at the level of the municipality in Brazil. Using data from the 2000 Brazil Census, I derive both Bayesian and non-Bayesian estimates of mortality for each municipality. In comparing the smoothed and raw estimates of this parameter, I find that the Bayesian estimates yield a clearer spatial pattern of child mortality with smaller variances in less populated municipalities, thus, more accurately reflecting the true mortality situation of those municipalities. These estimates can then be used, ultimately, to lead to more effective policies and health initiatives in the fight for the reduction of child mortality in Brazil. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-08-1866
Date14 December 2010
CreatorsMcKinnon, Sarah Ann
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0085 seconds