In this paper we explore bifurcations, in particular the Hopf bifurcation. We study this especially in connection with the Brusselator, which is a model of certain chemical reaction-diffusion systems. After a thorough exploration of what a bifurcation is and what classifications there are, we give graphic representations of an occurring Hopf bifurcation in the Brusselator. When an additional forcing term is added, behavior changes dramatically. This includes the introduction of a horseshoe in the time map as well as a strange attractor in the system.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1634 |
Date | 17 May 2005 |
Creators | Jones, Steven R. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0018 seconds