Return to search

Biodegradation of azo dyes.

Ma Yong Hong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 130-151). / ABSTRACT --- p.vii / Chapter CHAPTER ONE --- INTRODUCTION / Chapter 1.1 --- History of dyestuffs --- p.1 / Chapter 1.1 --- The classification of dyes --- p.4 / Chapter 1.3 --- The application of dyes --- p.6 / Chapter 1.4 --- Ecological aspects of colour chemistry --- p.7 / Chapter 1.4.1 --- Toxicity to microorganisms --- p.7 / Chapter 1.4.2 --- Toxicity to Mammals --- p.9 / Chapter 1.5 --- Colour contamination --- p.10 / Chapter 1.6 --- Treatment of wastewater containing dyes --- p.11 / Chapter 1.7 --- Studies on the field of biodegradation of dyes --- p.13 / Chapter 1.7.1 --- Current knowledge of biodegradation of azo dyes by bacteria --- p.13 / Chapter 1.7.2 --- Degradation of azo dyes by fungi and helminths --- p.16 / Chapter 1.8 --- Purpose of study --- p.17 / Chapter CHAPTER TWO --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.19 / Chapter 2.1.1 --- Chemicals --- p.19 / Chapter 2.1.2 --- Recipes --- p.22 / Chapter 2.1.2.1 --- Isolating medium (I.M.) --- p.22 / Chapter 2.1.2.2 --- Basal Medium (B.M.) --- p.23 / Chapter 2.1.2.3 --- LB Medium (Luria Broth) --- p.24 / Chapter 2.1.2.4 --- Mineral salt medium (M.S.M.) --- p.24 / Chapter 2.2 --- Methods --- p.26 / Chapter 2.2.1 --- Isolation of azo-dye decolorization (ADD) strain --- p.26 / Chapter 2.2.1.1 --- Sample collection --- p.26 / Chapter 2.2.1.2 --- Preparation of inoculum --- p.26 / Chapter 2.2.1.3 --- Selection and isolation strain ADD 16-2 --- p.26 / Chapter 2.2.2 --- Optimal growth condition for strain ADD 16-2 --- p.27 / Chapter 2.2.3 --- Assay of decolorization activity --- p.29 / Chapter 2.2.3.1 --- Measurement of azo dye concentration --- p.29 / Chapter 2.2.3.2 --- Assay of azo dye decolorization activity of strain ADD 16-2 --- p.30 / Chapter 2.2.3.3 --- Structural specificity of the decolorization reaction --- p.32 / Chapter 2.2.4 --- Identification of the strain ADD cleavage product(s) --- p.32 / Chapter 2.2.5 --- Degradation of the intermediate(s)-sulfanific acid --- p.33 / Chapter 2.2.5.1 --- Enrichment and isolation of sulfanific acid degradation strains (SAD) --- p.33 / Chapter 2.2.5.2 --- Optimal sulfanific acid degradation condition of strain SAD M-l --- p.34 / Chapter 2.2.6 --- Complete degradation of a model azo dye (Tropaeolin O) by co-metabolism of strain ADD 16-2 and strain SAD M-l --- p.35 / Chapter 2.2.7 --- Assay for the degradation of the Tropaeolin O by immobilized strain ADD 16-2 and strain SAD M-l --- p.36 / Chapter 2.2.7.1 --- Method of immobilizing bacteria in sodium alginate --- p.36 / Chapter 2.2.7.2 --- Optimal reaction condition of the immobilized strain ADD 16-2 and strain SAD M-l --- p.37 / Chapter 2.2.7.3 --- The decolorization activity of free and immobilized cells for different dye concentration --- p.39 / Chapter 2.2.8 --- Construction of continuous column systems for complete dye degradation --- p.40 / Chapter 2.2.8.1 --- A Continuous anaerobic/aerobic pack-bed column system --- p.40 / Chapter 2.2.8.2 --- A continuous anaerobic packed-bed column and aerobic airlift-loop reactor --- p.42 / Chapter CHAPTER THREE --- RESULTS / Chapter 3.1 --- Decolorization of azo dyes --- p.44 / Chapter 3.1.1 --- Isolation of ADD strain --- p.44 / Chapter 3.1.2 --- Growth condition of strain ADD 16-2 --- p.44 / Chapter 3.1.2.1 --- The effect of aeration on the growth of strain ADD 16-2 --- p.44 / Chapter 3.1.2.2 --- Other factors affecting the growth of strain ADD 16-2 --- p.48 / Chapter 3.1.2.3 --- Effect of carbon source on growth --- p.48 / Chapter 3.1.3 --- Decolorization of azo dyes --- p.53 / Chapter 3.1.3.1 --- Determination of dye concentration --- p.53 / Chapter 3.1.3.1.A --- Determination of the wavelengths of the absorption maxima of azo dyes --- p.53 / Chapter 3.1.3.1.B --- Standard concentration curve of azo dyes --- p.53 / Chapter 3.1.3.2 --- Optimal condition for dye decolorization --- p.59 / Chapter 3.1.3.2.A --- Effect of aeration --- p.59 / Chapter 3.1.3.2.B --- Effect of temperature --- p.59 / Chapter 3.1.3.2.C --- Effect of pH --- p.65 / Chapter 3.1.3.1.D --- Effect of different carbon sources --- p.65 / Chapter 3.1.3.3 --- Structural specificity of the azo dye decolorization reaction --- p.68 / Chapter 3.1.3.4 --- Analysis of the biodegradation products from Tropaeolin O --- p.73 / Chapter 3.2 --- Degradation of the intermediate sulfanific acid --- p.79 / Chapter 3.2.1 --- Enrichment and isolation of strains that can degrade the azo dye decolorization product(s) --- p.79 / Chapter 3.2.2 --- Condition of sulfanific acid degradation --- p.82 / Chapter 3.2.2.1 --- The effect of the pH --- p.82 / Chapter 3.2.2.2. --- The effect of temperature --- p.82 / Chapter 3.3 --- An attemption of complete degradation of Tropaeolin O by strains ADD 16-2 and SAD M-l with combined anaerobic-aerobic process --- p.86 / Chapter 3.4 --- To study the decolorization potential store stain ADD 16-2 immobilized condition --- p.82 / Chapter 3.4.1. --- Condition of decolorization of Tropaeolin O by the immobilized cell ADD 16-2 --- p.39 / Chapter 3.4.1.1 --- The effect of the alginate gel concentration on the decolorization potential of strain ADD 16-2 --- p.89 / Chapter 3.4.1.2 --- The effect the of cell number entrapped in different size of alginate beads on the decolorization ability of the cell ADD 16-2 --- p.89 / Chapter 3.4.1.3 --- The effect of pH on the decolorization potential of immobilized strain ADD 16-2 --- p.92 / Chapter 3.4.1.4 --- The effect of temperature on the decolorization potential of immobilized cell ADD 16-2 --- p.95 / Chapter 3.4.1.5 --- The effects of Tropaeolin O concentration on the decolorization activity of strain ADD 16-2 --- p.95 / Chapter 3.5 --- Assay for the degradation of sulfanific acid by the immobilized cells SAD M-l --- p.99 / Chapter 3.5.1 --- Optimizing the condition of degradation of sulfanific acid by immobilized cells SAD M-l --- p.100 / Chapter 3.5.1.1 --- The effects of alginate gel concentration on the degradation potential of immobilized cells SAD M-l --- p.100 / Chapter 3.5.1.2 --- The effect of the amount of cells entrappedin alginate beads on the degradation of sulfanilic acid --- p.100 / Chapter 3.5.1.3 --- The effect of pH on sulfanific acid degradation by the immobilized bacterial cells SAD M-l --- p.103 / Chapter 3.5.1.4 --- The effect of temperature on degradation potential of the immobilized bacterial cells SAD M-l --- p.103 / Chapter 3.6 --- Degradation of Tropaeolin O by immobilized strains in a continuous anaerobic/aerobic column system --- p.107 / Chapter CHAPTER FOUR --- DISCUSSIONS / Chapter 4.1 --- Decolorization of azo dye --- p.112 / Chapter 4.2 --- Mineralization of the decolorization intermediate --- p.112 / Chapter 4.3 --- Two-step azo dye mineralization --- p.121 / Chapter 4.4 --- Functional aspects of immobilized cells --- p.124 / Chapter 4.5 --- Decolorization of Tropaeolin O by a continuous column reactor --- p.128 / REFERENCES --- p.127

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_318186
Date January 1994
ContributorsMa, Yong Hong., Chinese University of Hong Kong Graduate School. Division of Biochemistry.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, viii, 151 leaves : ill. (some mounted col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0028 seconds