This thesis is dedicated to extracting expression robust features for 3D face recognition. The use of 3D imaging enables the extraction of discriminative features that can significantly improve the recognition performance due to the availability of facial surface information such as depth, surface normals and curvature. Expression robust analysis using information from both depth and surface normals is investigated by dividing the main facial region into patches of different scales. The nasal region and adjoining parts of the cheeks are utilized as they are more consistent over different expressions and are hard to deliberately occlude. In addition, in comparison with other parts of the face, these regions have a high potential to produce discriminative features for recognition and overcome pose variations. An overview and classification methodology of the widely used 3D face databases are first introduced to provide an appropriate reference for 3D face database selection. Using the FRGC and Bosphorus databases, a low complexity pattern rejector for expression robust 3D face recognition is proposed by matching curves on the nasal and its environs, which results in a low-dimension feature set of only 60 points. To extract discriminative features more locally, a novel multi-scale and multi-component local shape descriptor is further proposed, which achieves more competitive performances under the identification and verification scenarios. In contrast with many of the existing work on 3D face recognition that consider captures obtained with laser scanners or structured light, this thesis also investigates applications to reconstructed 3D captures from lower cost photometric stereo imaging systems that have applications in real-world situations. To this end, the performance of the expression robust face recognition algorithms developed for captures from laser scanners are further evaluated on the Photoface database, which contains naturalistic expression variations. To improve the recognition performance of all types of 3D captures, a universal landmarking algorithm is proposed that makes uses of different components of the surface normals. Using facial profile signatures and thresholded surface normal maps, facial roll and yaw rotations are calibrated and five main landmarks are robustly detected on the well-aligned 3D nasal region. The landmarking results show that the detected landmarks demonstrate high within-class consistency and can achieve good recognition performances under different expressions. This is also the first landmarking work specifically developed for the reconstructed 3D captures from photometric stereo imaging systems.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:707585 |
Date | January 2016 |
Creators | Gao, Jiangning |
Contributors | Evans, Adrian ; Li, Ran |
Publisher | University of Bath |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0065 seconds