Return to search

Gesture passwords: concepts, methods and challenges

Biometrics are a convenient alternative to traditional forms of access control such as passwords and pass-cards since they rely solely on user-specific traits. Unlike alphanumeric passwords, biometrics cannot be given or told to another person, and unlike pass-cards, are always “on-hand.” Perhaps the most well-known biometrics with these properties are: face, speech, iris, and gait. This dissertation proposes a new biometric modality: gestures.

A gesture is a short body motion that contains static anatomical information and changing behavioral (dynamic) information. This work considers both full-body gestures such as a large wave of the arms, and hand gestures such as a subtle curl of the fingers and palm. For access control, a specific gesture can be selected as a “password” and used for identification and authentication of a user. If this particular motion were somehow compromised, a user could readily select a new motion as a “password,” effectively changing and renewing the behavioral aspect of the biometric.

This thesis describes a novel framework for acquiring, representing, and evaluating gesture passwords for the purpose of general access control. The framework uses depth sensors, such as the Kinect, to record gesture information from which depth maps or pose features are estimated. First, various distance measures, such as the log-euclidean distance between feature covariance matrices and distances based on feature sequence alignment via dynamic time warping, are used to compare two gestures, and train a classifier to either authenticate or identify a user. In authentication, this framework yields an equal error rate on the order of 1-2% for body and hand gestures in non-adversarial scenarios. Next, through a novel decomposition of gestures into posture, build, and dynamic components, the relative importance of each component is studied. The dynamic portion of a gesture is shown to have the largest impact on biometric performance with its removal causing a significant increase in error. In addition, the effects of two types of threats are investigated: one due to self-induced degradations (personal effects and the passage of time) and the other due to spoof attacks. For body gestures, both spoof attacks (with only the dynamic component) and self-induced degradations increase the equal error rate as expected. Further, the benefits of adding additional sensor viewpoints to this modality are empirically evaluated. Finally, a novel framework that leverages deep convolutional neural networks for learning a user-specific “style” representation from a set of known gestures is proposed and compared to a similar representation for gesture recognition. This deep convolutional neural network yields significantly improved performance over prior methods.

A byproduct of this work is the creation and release of multiple publicly available,
user-centric (as opposed to gesture-centric) datasets based on both body and hand gestures.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/17090
Date21 June 2016
CreatorsWu, Jonathan
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0015 seconds