This research developed the quasi-static and dynamic equipment and protocols for tests of both Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) to predict blast performance. VHSC was developed for high compressive strength (> 200 MPa). Using VHSC as the baseline material, HSHDC was developed and exhibits comparable compressive strength (> 150 MPa) and high tensile ductility (> 3% tensile strain). This research investigated quasi-static material properties including compression, tension, and flexure (third-point and pressure loadings). Additionally, dynamic blast load simulator (shock tube) tests were performed on simply-supported one-way panels in flexure. Subsequently, the material response in flexure was predicted using the Wall Analysis Code (WAC). Although VHSC has a higher peak flexural strength capacity, HSHDC exhibits higher ductility through multiple parallel micro-cracks transverse to loading. The equipment and test protocols proved to be successful in providing ways to test scaled concrete specimens quasi-statically and dynamically.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2910 |
Date | 11 December 2015 |
Creators | Williams, Brett Anthony |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.002 seconds