La spectroscopie Raman est un outil non destructif fort utile lors de la caractérisation de matériau. Cette technique consiste essentiellement à faire l’analyse de la diffusion inélastique de lumière par un matériau. Les performances d’un système de spectroscopie Raman proviennent en majeure partie de deux filtres ; l’un pour purifier la raie incidente (habituellement un laser) et l’autre pour atténuer la raie élastique du faisceau de signal. En spectroscopie Raman résonante (SRR), l’énergie (la longueur d’onde) d’excitation est accordée de façon à être voisine d’une transition électronique permise dans le matériau à l’étude. La section efficace d’un processus Raman peut alors être augmentée d’un facteur allant jusqu’à 106. La technologie actuelle est limitée au niveau des filtres accordables en longueur d’onde. La SRR est donc une technique complexe et pour l’instant fastidieuse à mettre en œuvre.
Ce mémoire présente la conception et la construction d’un système de spectroscopie Raman accordable en longueur d’onde basé sur des filtres à réseaux de Bragg en volume. Ce système vise une utilisation dans le proche infrarouge afin d’étudier les résonances de nanotubes de carbone. Les étapes menant à la mise en fonction du système sont décrites. Elles couvrent les aspects de conceptualisation, de fabrication, de caractérisation ainsi que de l’optimisation du système. Ce projet fut réalisé en étroite collaboration avec une petite entreprise d’ici, Photon etc. De cette coopération sont nés les filtres accordables permettant avec facilité de changer la longueur d’onde d’excitation. Ces filtres ont été combinés à un laser titane : saphir accordable de 700 à 1100 nm, à un microscope «maison» ainsi qu’à un système de détection utilisant une caméra CCD et un spectromètre à réseau.
Sont d’abord présentés les aspects théoriques entourant la SRR. Par la suite, les nanotubes de carbone (NTC) sont décrits et utilisés pour montrer la pertinence d’une telle technique. Ensuite, le principe de fonctionnement des filtres est décrit pour être suivi de l’article où sont parus les principaux résultats de ce travail. On y trouvera entre autres la caractérisation optique des filtres. Les limites de basses fréquences du système sont démontrées en effectuant des mesures sur un échantillon de soufre dont la raie à 27 cm-1 est clairement résolue. La simplicité d’accordabilité est quant à elle démontrée par l’utilisation d’un échantillon de NTC en poudre. En variant la longueur d’onde (l’énergie d’excitation), différentes chiralités sont observées et par le fait même, différentes raies sont présentes dans les spectres. Finalement, des précisions sur l’alignement, l’optimisation et l’opération du système sont décrites. La faible acceptance angulaire est l’inconvénient majeur de l’utilisation de ce type de filtre. Elle se répercute en problème d’atténuation ce qui est critique plus particulièrement pour le filtre coupe-bande. Des améliorations possibles face à cette limitation sont étudiées. / Raman spectroscopy is a useful and non-destructive tool for material characterization. It uses inelastic light scattering interaction with matter to investigate materials. The major part of the performances in a Raman spectroscopy system comes from two light filter units: the first shapes the light source (usually a laser) and the other attenuates the elastic scattered light in the signal beam. In resonant Raman spectroscopy (RRS), the excitation energy (wavelength) is tuned to match an electronic transition of the sample. When in resonance, the Raman cross section is increased by a factor up to 106. Current RRS setups are limited by filtering devices technology. RRS is a complex technique which, for the moment, remains tedious to implement.
This master thesis presents the construction of a tunable Raman spectroscopy system based on volume Bragg gratings light filters. The setup is designed to operate in the near infrared region so as to study carbon nanotubes resonances. Steps leading to the operation of the system are described. They cover conceptualization, fabrication, characterization and optimisation of the setup. Collaboration with a local small company, Photon etc, led to the building of two new light filters that allow to tune easily the excitation wavelength. These filters have been adapted to work with a tunable titanium-sapphire laser (tunable from 700 to 1100 nm) and assembled with a homemade microscope and a detection system combining a CCD camera with a grating spectrometer.
This document is arranged as follow: First are presented the theoretical aspects surrounding RRS. Carbon nanotubes (CNT) are than described to illustrate the relevance of such technique applied to material science. Principles behind the use of the Bragg filters are described to be followed by a scientific paper in which the main results of this work are presented. These include the optical characterisation of the filters and measurements with the system. Low frequency limits of the system are demonstrated using a sulphur powder where the 27 cm-1 line is clearly resolved. The tunability of the setup is also demonstrated using a bulk carbon nanotube sample. By changing the excitation wavelength, different nanotube chiralities become resonant, leading to different signals in the Raman spectra. Finally, clarifications regarding the alignment, optimisation and operation of the system are described. Low angular acceptance has been found to be the main drawback of the system leading to attenuation problems especially critical for the notch filter. Possible improvements on this limitation are discussed.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/5153 |
Date | 04 1900 |
Creators | Meunier, François |
Contributors | Martel, Richard |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.003 seconds