[pt] Esse trabalho tem como objetivo reunir os teoremas topológicos de ponto fixo clássicos e seus corolários, além de teoremas de ponto fixo provenientes da teoria do grau e algumas importantes aplicações desses teoremas a variadas áreas - desde as clássicas aplicações à teoria de EDOs e EDPs à uma aplicação à teoria dos jogos. Um exemplo é o Teorema do Ponto Fixo de Schauder-Tychonoff, para aplicações compactas em convexos de espaços localmente convexos, do qual segue como corolário que todo compacto convexo de
um espaço vetorial normado (não necessariamente de dimensão finita) possui a propriedade do ponto fixo. No que se refere à teoria dos jogos em particular, foi deduzido o Teorema de Nash, que determina condições sobre as quais certos jogos possuem equilíbrios nos seus espaços das estratégias. Toda a topologia geral necessária nas demonstrações foi desenvolvida extensiva e detalhadamente a partir de topologia elementar, seguindo algumas das referências bibliográficas. O Teorema de Extensão de Dugundji - uma extensão do Teorema de Extensão de Tietze a fechados de espaços métricos sobre espaços localmente convexos -, por exemplo, é demonstrado com detalhes e usado diversas vezes
ao longo da dissertação. / [en] The goal of the present work is to gather the classical fixed-point theorems and their corollaries, as well as other fixed-point theorems arising from degree theory, and some important applications to diverse fields -
from the classical applications to ODEs and PDEs to an application to the game theory. An example is the Schauder-Tychonoff Fixed-Point Theorem, 1 concerning compact mappings in convex subsets of locally convex spaces, from which it follows as a corollary that every compact convex subset of a normed
vector space is a fixed-point space. In regard to game theory in particular, we obtained Nash s theorem, 2 which ascertains conditions over which certain games have equilibria in their strategy spaces. All general topology necessary in the proofs was developed extensively and in details from a basic topology
starting point, following some of the bibliographic references. Dugundji s Extension Theorem 3 - an extension of Tietze s Extension Theorem 4 for closed subsets of metric spaces into locally convex spaces-, for instance, is obtained with detais and used throughout the dissertation.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:31064 |
Date | 17 August 2017 |
Creators | LEONARDO HENRIQUE CALDEIRA PIRES FERRARI |
Contributors | RICARDO SA EARP |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0021 seconds