The electronic g-tensor in halogen-doped cadmium sulfide has been measured at 1.7°K, and its dependence upon uniaxial pressures parallel and perpendicular to the c-axis has been investigated. A sample doped with iodine to a room temperature resistivity of ≈ 0.7Ω cm exhibited an anisotropic
g-tensor with gǁ = 1.785 and g⊥ = 1.767. The anisotropy in a heavily bromine-doped sample [formula omitted] was the same, but gǁ was slightly
larger, 1.789. When some of the cadmium is replaced by zinc, the alloy acquires properties intermediate between those of CdS and ZnS. This was shown to apply to the g-tensor by measuring it in CdS(10%Zn):I. It was found to have a smaller anisotropy and a larger absolute value than that of CdS:I, thus having changed towards that of ZnS.
The pressuredependence of the g-tensor and the change in the optical bandgap under hydrostatic pressure could be reasonably well explained in terms of two deformation potential constants for the bandgap, D₁-C₁-C₃ ≈ 6.3 eV/unit strain and D₂-C₂-C₄ ≈ 1.8 eV/unit strain. It is therefore concluded that although the bandstructure of CdS is not sufficiently well known to predict the g-tensor correctly, the interaction of the conduction band with the valence bands appears to be dominant. Further experiments to study the conduction band edge are proposed. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/37168 |
Date | January 1966 |
Creators | Slagsvold, Bjorn Johan |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0061 seconds