Return to search

Early-Age Drying and Cracking Properties of Wollastonite-Textile Reinforced Cement Paste Composites

abstract: The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and wollastonite nano-fibers were developed and tested under low vacuum conditions to simulate severe evaporation conditions and expedite the drying process causing plastic shrinkage cracks. Cumulative moisture loss, evaporation rates, and diffusivity were analyzed by means of a 2-stage diffusion simulation approach, developed previously in Arizona State University. Effect of fiber-matrix interaction on the transport properties of the composite were evaluated using the existing approach. Morphology of the cracked surface was investigated by the means of image analysis wherein length, width, area and density of the cracks were computed to help characterize the contribution of fiber and textile in the cracking phenomenon. Additionally, correlation between cumulative moisture loss and crack propagation was attempted. The testing procedures and associated analytical methods were applied to evaluate effectiveness of four wollastonite fiber sizes and also a hybrid reinforcement system with alkali-resistant glass (ARG) textile in improving shrinkage cracking related parameters. Furthermore, the experimental and analytical approach was extended to magnified version of the existing shrinkage testing set-up to study the size effect of these composites when subjected to matching drying conditions. Different restraining mechanisms were used to study the simulation of the cracking phenomena on a larger specimen. Paste and mortar formulations were developed to investigate size effect on shrinkage resistance of cementitious composites. / Dissertation/Thesis / Masters Thesis Civil Engineering 2014

Identiferoai:union.ndltd.org:asu.edu/item:25871
Date January 2014
ContributorsKachala, Robert (Author), Mobasher, Barzin (Advisor), Dharmarajan, Subramaniam (Committee member), Neithalath, Narayanan (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format92 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0011 seconds