Insitu cementitious stabilisation is an economical, environmentally sustainable and socially advantageous means of rehabilitating pavements. With the recent availability of a wide range of binders and advanced construction equipment, the characterisation of cementitiously stabilised pavement materials has become the focus of further advancement of this technology. Australian practice has moved towards the use of Indirect Diametric Tensile (IDT) methods for the characterisation of these materials. A draft protocol for the IDT test has been prepared and specifies samples to be compacted by gyratory compactor. This procedure provides for both monotonic and repeated load testing, which aims to measure the material???s strength, modulus and fatigue life. A range of host materials, including a new crushed rock and a reclaimed existing pavement base course, were assessed when stabilised with a General Purpose cement binder as well as with a slag-lime blended binder. Materials were assess for their inherent material properties, Unconfined Compression Strength (UCS), Unconfined Compression modulus, IDT strength and modulus under both monotonic and repeated load. A number of amendments and refinements to the testing protocol were recommended. These included the use of minimum binder contents to ensure the binder was uniformly distributed and to promote heavy binding of the materials to ensure they behaved elastically. It was also recommended that samples be gyratory compacted to a pre-determined sample height to allow a constant density to be achieved. The variability of the test results was examined. UCS results were found to be comparatively as variable as other researchers had reported. IDT strength results contained a similar level of variability, which was considered to be acceptable. Modulus results, both monotonic and repeated load, were found to be five to ten times more variable than strength results, which is a generally accepted trend for modulus testing. Under repeated loading, some challenges with the test protocol were encountered. The primary challenge was obtaining reliable and repeatable diametrical displacement data for modulus calculation. This was partially overcome by the insertion of smooth spacers to prevent the Linear Voltage Displacement Transformer (LVDTs) becoming caught on the sample sides. The achievement of reliable and repeatable IDT modulus results through improved displacement measurements should be the focus of future research efforts in this area.
Identifer | oai:union.ndltd.org:ADTP/240755 |
Date | January 2007 |
Creators | White, Gregory William, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW |
Publisher | Awarded by:University of New South Wales - Australian Defence Force Academy. School of Aerospace, Civil and Mechanical Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Gregory William White, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0016 seconds