Return to search

Molecular Dynamic Simulation of Polysiloxane

Polymer Derived Ceramics are a promising class of Materials that allow for higher levels of tunability and shaping that traditional sintering methods do not allow for. Polysiloxanes are commonly used as a precursor for these types of material because of their highly tunable microstructures by adjusting the side groups on the initial polymer. These Polymers are generally cross linked and pyrolyzed in inert atmospheres to form the final polymer.
The microstructures of Polymer Derived Ceramics is complex and hard to observe due to the size of each microstructure region and the proximity in the periodic table that the elements present have. The process of forming phases such as Graphitic Carbon, Amorphous Carbon, Silicon Carbide. Silicon Oxide, and SiliconOxycarbide are not well understood. Simulation provides a route to understanding the phenomenon behind these phase formations. Specifically, Molecular dynamics simulation paired with the Reaxff forcefield provides a framework to simulate the complex processes involved in pyrolysis such as chemical reactions and a combination of thermodynamic and kinetic interactions.
This Thesis examines firstly the size effect that a system can have on phase separation and the change in composition. Showing that size plays a major role in how the system develops and limits the occurrence of specific reactions. Secondly, this thesis shows that using polymer precursors with different initial polymer components leads to vastly different microstructures and yield. This provides insights into how the transition from polymer to ceramic takes place on a molecular level. / Master of Science / Ceramics and Polymers are seen all around the world. Polymers are used in many things from grocery bags to high performance panels on airplanes. Polymers are generally cheap to produce and can be molded into a variety of shapes. Ceramics are generally hard materials and are also used in a wide variety of situations from the concrete in buildings to coatings that protect turbine blades. Ceramics tend to be harder to form specific shapes and more costly to machine. Polymer derived polysiloxanes address this problem by being formed in the polymer state and then transformed into a ceramic by being heated in inert atmospheres. The process of the heating is very complex and the effect that different polymers have on the atomic level is not well understood. This thesis works to address this by using simulation to see what cannot be seen through experimentation alone.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/114459
Date10 April 2023
CreatorsChaney, Harrison Matthew
ContributorsMaterials Science and Engineering, Lu, Peizhen, Bai, Xianming, Deshmukh, Sanket A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsCreative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0024 seconds