Return to search

Improved vortex method for LES inflow generation and applications to channel and flat-plate flows / Méthode de vortex améliorée pour la génération des conditions d'entrée pour la simulation numérique des grandes échelles et applications aux écoulements en canal plan et en couche limite sur plaque plane

La simulation des grandes échelles (SGE ou LES pour large eddy simulation) commence à être très utilisée dans l’industrie. Par résolution directe des structures turbulents de grande tailles, le calcul LES est capable de calculer le bruit générée par la voilure ou de prédire avec précision le décollement de coin dans une configuration très simplifiée du compresseur. L’un des problèmes les plus importants pour effectuer un calcul LES est de fournir des conditions d’entrée avec des champs turbulents.Pour une approche hybride RANS/LES (RANS pour Reynolds Averaged Navier-Stokes), les conditions d’entrée turbulentes pour un calcul LES sont générées à l’aide des solutions fournies par le calcul RANS en amont. Il existe plusieurs méthodes pour générer les conditions d’entrée pour LES. Elles peuvent principalement être classées en deux catégories : 1) simulation avec pré-calcul ; 2) la méthode de turbulence synthétique. La simulation avec pré-calcul consiste à effectuer un calcul LES indépendant pour générer un champ turbulent comme conditions d’entrée pour alimenter le calcul principal. Cette méthode peut obtenir des turbulences de haute qualité, mais elle augmente considérablement le temps de calcul et le stockage des données. Le champ turbulent généré par la méthode de turbulence synthétique exige une « distance de adaptation », pendante laquelle le champ turbulent devient pleinement développé. L’objectif principal pour améliorer ce genre de méthodes est donc de diminuer cette distance nécessaire.Dans cette thèse, la méthode de vortex, qui est une approche de turbulence synthétique, est présentée et améliorée. A travers des expériences numériques, les paramètres de la méthode de vortex améliorée sont systématiquement optimisés. L’application à l’écoulement en canal plan et à couche limite en plaque plane, montrent que la méthode de vortex améliorée génère de manière efficace pour fournir des conditions d’entrée pour LES. Dans le cas de l’écoulement en canal plan, la distance d’adaptation nécessaire pour le rétablissement de la turbulence est d’environ 6 fois la demi-hauteur du canal. Pour le cas de l’écoulement en plaque plane, cette distance est environ 21 fois l’épaisseur de la couche limite. Enfin, dans le but de qualifier la turbulence obtenue par des calculs LES, nous utilisons les coefficients de dissymétrie des dérivées des fluctuations de vitesse, et, nous les introduisons comme un nouveau critère pour la qualité de LES. / Large eddy simulation is becoming an important numerical tool in industry recently. Resolving large scale turbulent motions directly, LES is capable to compute the aeroacoustic noise generated by the airfoil or to precisely capture the corner separation in a linear compressor cascade. The main challenge to perform a LES calculation is to prescribe a realistic unsteady inflow field. For hybrid RANS/LES approaches, inflow conditions for downstream LES region must be generated from the upstream RANS solutions. There exist several methods to generate inflow conditions for LES. They can mainly be divided into two categories: 1) Precursor simulation; 2) Synthetic turbulence methods. Precursor simulation requires to run a separate calculation to generate a turbulent ow or a database to feed the main computation. This kind of methods can generate high quality turbulence. However, it requires heavy extra computing load. Synthetic turbulence methods consist in generating a fluctuating velocity field, and within a short “adaptation distance”, the field get fully developed. So main goal of synthetic turbulence methods is to decrease the required adaptation distance. The vortex method which is a synthetic turbulence method is presented and improved here. Parameters of the improved vortex method are optimized systematically with a series of calculations in this thesis. Applications on channel and flat-plate flows show that the improved vortex method is effective in generating the LES inflow conditions. The adaptation distance required for turbulence recovery is about 6 times the half channel height for channel flow, and 21 times the boundary-layer thickness (at the inlet of vortex) for at-plate ow. The velocity-derivative skewness is used to qualify the generated turbulence, and is introduced as a new criterion of LES calculation.

Identiferoai:union.ndltd.org:theses.fr/2016LYSEC058
Date12 December 2016
CreatorsXie, Baolin
ContributorsLyon, Shao, Liang
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds