Este trabalho teve como principal objetivo produzir membranas porosas de carboximetilquitosana e hidrogéis de quitosana com propriedades físico-químicas e mecânicas adequadas para aplicações em Engenharia de Tecidos. Para isso, quitosanas com diferentes graus de acetilação (4,0%<GA<40%) e de elevada massa molar média viscosimétrica (Mv>750.000 g.mol-1) foram produzidas através da aplicação de processos consecutivos de desacetilação assistida por irradiação de ultrassom de alta intensidade (DAIUS) à beta-quitina extraída de gládios de lulas Doryteuthis spp. A carboximetilação de quitosana extensivamente desacetilada (Qs-3; GA=4%) foi realizada pela reação com ácido monocloroacético em meio isopropanol/solução aquosa de NaOH, gerando a amostra CMQs-0 (GS≈0,98; Mv≈190.000 g.mol-1). A irradiação de ultrassom de alta intensidade foi empregada para tratar solução aquosa de CMQs-0 durante 1 h e 3 h, resultando nas amostras CMQs-1 (Mv≈94.000 g.mol-1) e CMQs-3 (Mv≈43.000 g.mol-1), respectivamente. Para a produção de membranas reticuladas, genipina foi adicionada em diferentes concentrações (1,0x10-4 mol.L-1, 3,0x10-4 mol.L-1 ou 5,0x10-4 mol.L-1) às soluções aquosas das CMQs, que foram vertidas em placas de Petri e a reação de reticulação procedeu por 24 h. Em seguida, as membranas reticuladas (M-CMQs) foram liofilizadas, neutralizadas, lavadas e liofilizadas novamente, resultando em nove amostras, que foram caracterizadas quanto ao grau médio de reticulação (GR), grau médio de hidratação (GH), morfologia, propriedades mecânicas e quanto à susceptibilidade à degradação por lisozima. O grau médio de reticulação (GR) foi tanto maior quanto maior a concentração de genipina empregada na reação, variando de GR≈3,3% (M-CMQs-01) a GR≈17,8% (M-CMQs-35). As análises de MEV revelaram que as membranas reticuladas M-CMQs são estruturas porosas que apresentam maior densidade de poros aparentes quanto maiores os valores de Mve GR. Entretanto, as membranas preparadas a partir de CMQs de elevada massa molar (Mv>94.000 g.mol-1) e pouco reticuladas (GR<10%), apresentaram propriedades mecânicas superiores em termos de resistência máxima à tração (>170 kPa) e elongação máxima à ruptura (>40%). Por outro lado, as membranas mais susceptíveis à degradação enzimática foram aquelas preparadas a partir de CMQs de baixa massa molar (Mv≈43.000 g.mol-1) e que exibiram baixos graus de reticulação (GR<11%). Hidrogéis estáveis de quitosana sem o uso de qualquer agente de reticulação externo foram produzidos a partir da gelificação de soluções aquosas de quitosana com solução de NaOH ou vapor de NH3. Os hidrogéis produzidos a partir de soluções de quitosana de elevada massa molar média ponderal (Mw≈640.000 g.mol-1) e extensivamente desacetilada (DA≈2,8%) em concentrações poliméricas acima 2,0%, exibiram melhores propriedades mecânicas com o aumento da concentração polimérica, devido à formação de numerosos emaranhamentos físicos das cadeias poliméricas em solução. Os resultados mostram que as propriedades físico-químicas e mecânicas dos hidrogéis de quitosana podem ser controladas variando a concentração do polímero e o processo de gelificação. A avaliação biológica de tais hidrogéis para a regeneração de miocárdio infartado de ratos revelou que os hidrogéis de quitosana preparados a partir de soluções de polímero a 1,5% foram perfeitamente incorporados sobre a superfície do epicárdio do coração e apresentaram degradação parcial acompanhada por infiltração de células mononucleares. / The aim of this study was to produce and characterize porous membranes of carboxymethylchitosan and chitosan-based hydrogel with physicochemical and mechanical properties appropriate for applications in tissue engineering. For this, chitosans with different degrees of acetylation (4,0%<GA<40%) and high viscosity average molecular weight (Mv>750.000 g.mol-1) were produced by application of consecutive processes of ultrasound-assisted deacetylation (USAD) of the beta-chitin extracted from squid pens (Doryteuthis spp.). The carboxymethylation of extensively deacetylated chitosan (Qs-3; DA=4%) was carried out by reaction with monochloroacetic acid in isopropanol/aqueous NaOH, producing CMQs-0 sample (GS≈0,98; Mv≈190.000 g.mol-1). The ultrasonic irradiation was employed to depolymerize the CMQs-0 samples by irradiation for 1 h and 3 h, resulting in CMQs-1 samples (Mv≈94.000 g.mol-1) and CMQs-3 (Mv≈43.000 g.mol-1), respectively. For the production of crosslinked membranes, genipin was added at different concentrations (1,0x10-4 mol.L-1, 3,0x10-4 mol.L-1 ou 5,0x10-4 mol.L-1) in the aqueous solutions of CMQs, which were poured into Petri dishes and the crosslinking reaction proceeded for 24 h. Then, the crosslinked membranes (M-CMQs) were lyophilized, neutralized, washed, and lyophilized again resulting in nine samples which were characterized by crosslinking degree (CrD), swelling ration (SR), morphology, mechanical properties and the susceptibility to enzymatic degradation by lysozyme. The crosslinking degree (CrD) increased with increasing concentration of genipin used in the reaction, varying from CrD≈3.3% (M-CMQs-01) to CrD≈17.8% (M-CMQs-35). The SEM analysis showed that the crosslinked membranes M-CMQs are porous structures that have a higher apparent pores density with increasing values of Mv and CrD. However, the membranes prepared from high molecular weight CMQs (Mv>94.000 g.mol-1) and low crosslinked (GR<10%) showed superior mechanical properties in terms of ultimate tensile strength (>170 kPa) and maximum elongation at break (>40%). However, the more susceptible membrane to enzymatic degradation was prepared from low molecular weight CMQs (Mv≈43.000 g.mol-1) and low cross-linking degrees (GR<11%). Stable chitosan hydrogels without any external crosslinking agent was successfully achieved by inducing the gelation of a viscous chitosan solution with aqueous NaOH or gaseous NH3. The hydrogels produced from high molecular weight (Mw≈640.000 g.mol-1) and extensively deacetylated chitosan (DA≈2,8%) at polymer concentrations above ≈2.0% exhibited improved mechanical properties due to the increase of the chain entanglements and intermolecular junctions. The results also show that the physicochemical and mechanical properties of chitosan hydrogels can be controlled by varying their polymer concentration and by controlling the gelation kinetics, i.e. by using different gelation routes. The biological evaluation of such hydrogels for regeneration of infarcted myocardium revealed that chitosan hydrogels prepared from 1.5% polymer solutions was perfectly incorporated onto the epicardial surface of the heart and presented partial degradation accompanied by mononuclear cell infiltration.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29062016-164708 |
Date | 29 April 2016 |
Creators | Fiamingo, Anderson |
Contributors | Campana Filho, Sergio Paulo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0025 seconds