Return to search

Function follows form : how connectivity patterns govern neural responses

Thesis (Ph. D. in Neuroscience)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2013. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references. / Connectivity restricts and defines the information that a network can process. It is the substance of information processing that underlies the patterns of functional activity in the brain. By combining diffusion-weighted imaging or DWI, with fMRI, we are able to non-invasively measure connectivity and neural responses in the same individuals and directly relate these two measures to one another. In Chapter 2, I first establish the proof-of-principle that anatomical connectivity alone can predict neural responses in cortex, specifically of face-selectivity in the fusiform gyrus. I then extend this novel approach to the rest of the brain and test whether connectivity can accurately predict neural responses to various visual categories in Chapter 3. Finally, in Chapter 4, I compare and contrast the resulting models, which are essentially networks of connectivity that are functionally-relevant to each visual category, and demonstrate the type of knowledge that can be uncovered by directly integrating structure and function. / by David Eugene Osher. / Ph.D.in Neuroscience

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/81731
Date January 2013
CreatorsOsher, David Eugene
ContributorsJohn D. E. Gabrieli., Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences., Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format129 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0022 seconds