Return to search

Ca2+ dependant synaptic modification

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics; and, (S.B.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2004. / Includes bibliographical references (p. 21-22). / It has been assumed that Ca2+ influx of different duration and amplitude would generate different level of potentiation. The conventional protocols of generating LTP have been 1. tetanic stimulation of presynaptic cell, 2. theta burst stimulation of presynaptic cell, and 3. correlated stimulation of pre- and post-synaptic cells. However, the effects of different Ca2+ influx can not be precisely dissected with the conventional protocols for the following defects: 1. the protocols do not discriminate between pre- and post-synaptic side plasticity, 2. the protocols observe synaptic plasticity between two cells which involve multiple synapses with heterogeneous properties, 3. precise control and measurement of the amount of Ca2+ influx are not possible in the protocols. In the present experiment, we perfused glutamate directly on to a single postsynaptic site, depolarized the postsynaptic intracellular potential to a controlled voltage for a controlled duration of time, thus controlling the opening of postsynaptic NMDA receptors and Ca2+ influx. By using this method, we found 1. that modification of synaptic strength has a bell-shaped dependency to the amount of Ca2+ influx, 2. that weak Ca2+ current through desensitized NMDA receptors sustained for a long period of time (160 ms) generates LTD, 3. evidence that phosphorylation of AMPAR leads to insertion of AMPAR. / by Dongsung Huh. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/32741
Date January 2004
CreatorsHuh, Dongsung, 1981-
ContributorsGuosong Liu., Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences., Massachusetts Institute of Technology. Dept. of Physics., Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format44 p., 2500300 bytes, 2500382 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.002 seconds