Das Synaptonemalkomplexprotein SYCP1 ist eine Strukturkomponente des Synaptonemalkomplexes (SC) von Saeugern, einer meiosespezifischen Struktur, die wesentlich fuer die Synapse, Rekombination und Segregation homologer Chromosomen ist. Der SC besteht aus zwei lateralen Elementen (LEs) und einer zentralen Region (CR), in deren Mitte das zentrale Element (CE) liegt. Dabei sind die LEs den Achsen der homologen Chromosomen aufgelagert und werden in der CR durch Transversalfilamente (TFs) mit dem CE verbunden. Im Protein SYCP1 (125 kDa) flankieren zwei nicht-helikale terminale Domaenen eine ausgedehnte zentrale „Coiled-Coil“-Domaene. Fuer diese Domaene wird angenommen, dass sie die die Kluft zwischen LEs und CE ueberbrueckt, wobei die C-Termini in den LEs verankert sind und die N-Termini im CE lokalisiert wurden. Um die molekulare Architektur des SC besser zu verstehen und die Bedeutung von SYCP1 für die Zusammenlagerung des SC aufzudecken, wurden die Polymerisationseigenschaften von SYCP1 erforscht. Dazu wurde das Protein in somatischen Zellen exprimiert. In diesem experimentellem Ansatz polymerisierte SYCP1 autonom zu filamentoesen Strukturen, welche sich auf ultrastruktureller Ebene als alternierende elektronendichte Balken offenbarten, die ueber TFs verbunden waren. Dieser Aufbau glich parallel aneinander gereihten Stapeln von SCs, so genannten Polykomplexen (PCs). Die Analyse der Orientierung der SYCP1 Molekuele innerhalb der PCs erwies, dass diese hochorganisiert vorliegen und die Organisation von SYCP1 innerhalb von PCs und SCs identisch ist. Folglich kann sich SYCP1 sogar in Abwesenheit anderer SC-Proteine zu Strukturen zusammenlagern, die der CR entsprechen und muss dementsprechend beim Aufbau der CR des SC den grundlegenden Faktor darstellen. Für eine genauere Analyse wurden ausgewaehlte Mutanten von SYCP1 exprimiert. Moleküle mit modifizierter Laenge der zentralen alpha-helikalen Domaene resultierten in der Bildung von PCs mit veränderter Weite der CR. Dies beweist, dass die „Coiled-Coil“-Domaene den Abstand der CR eines PC bestimmt und impliziert dieselbe Funktion in der SC-Bildung. Darueber hinaus wurde gezeigt, dass SYCP1 Molekuele mit Deletion des nicht-helikalen N-Terminus immer noch in der Lage sind, PCs zu bilden, diese Eigenschaft aber stark eingeschraenkt ist. Das bezeugt die Bedeutung des N-Terminus sowohl in der PC-Bildung als auch im Aufbau des CE von SCs, weist aber dabei auch dem vorderen Teil der „Coiled-Coil“-Domaene eine wichtige Rolle zu. Im Gegensatz dazu war bei Mutanten mit Deletion des nicht-helikalen C-Terminus die PC-Bildung vollstaendig blockiert, was auf eine große Bedeutung dieser Domaene fuer die Polymerisation hinweist. Ein weiterer Hauptgegenstand der Arbeit war die Charakterisierung von Bindungspartnern von SYCP1. Über Immungoldlokalisation auf Maushoden konnten die Proteine Syce1 und Cesc1 als erste ausschliessliche Komponenten des CE des SC bestimmt werden. Zusaetzlich wurde die Interaktion dieser Proteine mit dem N-Terminus von SYCP1 verifiziert. SYCP1 bildet also die Grundstruktur des CE aus und rekrutiert Syce1 und Cesc1. / The synaptonemal complex protein 1 (SYCP1) is a structural component of the mammalian synaptonemal complex (SC), a meiosis-specific nuclear structure essential for synapsis, recombination and segregation of homologous chromosomes. The SC is a tripartite structure consisting of two lateral elements (LEs) and the central region (CR) with a central element (CE) in its middle. The LEs are attached to the axes of homologous chromosomes and are connected with the CE by transversal filaments (TFs). The protein SYCP1 (125 kDa) contains a long central á-helical domain, which is predicted to mediate dimerization in a parallel coiled-coil structure, flanked by two non-helical ends. The coiled-coil is thought to cross the gap between the LEs and the CE, the C-termini are anchored in the LEs and the N-termini have been localized to the CE. In order to better understand the molecular architecture of the SC and the role of SYCP1 in SC-assembly the polymerization properties of SYCP1 were investigated. To this end the protein was expressed in somatic cells. In this approach SYCP1 is able to form stable filamentous structures autonomously, which on the ultrastructural level represent alternating lines connected by TFs. This composition resembles multimeric SC-like complexes arranged in parallel, so called polycomplexes (PCs). By determining the orientation of SYCP1 molecules it was proven that PCs are highly ordered structures with the same arrangement of SYCP1 molecules as in SCs. These results demonstrate that SYCP1 is able to assemble into structures closely resembling the CR of SCs even in the absence of other SC-proteins, which signifies that SYCP1 is the primary determinant of SC assembly which in turn plays a key role in synapsis of homologous chromosomes. For a more detailed analysis, selected mutated constructs of SYCP1 were expressed. Mutations that modified the length of the central alpha-helical domain resulted in the formation of PCs consisting of repeat units of altered width, verifying that the coiled-coil domain determines the distance between the lines of the PC. This result implies the same function of this domain in SC assembly. Moreover, it was observed that SYCP1 molecules lacking the non-helical N-terminus are still able to form PCs, albeit at a strongly reduced level. This shows the importance of the N-terminus both in SYCP1 autoassembly and in the formation of the CE of SCs, but also implies a significant role of the N-terminal part of the coiled-coil domain. In contrast, when the non-helical C-terminus was deleted, filament formation was eliminated indicating a major role of the C-terminus in SYCP1 autoassembly. Another major topic of this work was the characterization of SYCP1 binding partners. By immunogold localization on mouse testis the proteins Syce1 and Cesc1 could be identified as the first exclusive components of the CE of SCs. Furthermore, the interaction of these proteins with the N-terminal region of SYCP1 was validated. Hence, SYCP1 forms the basic structure of the CE and recruits Syce1 and Cesc1.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:1316 |
Date | January 2005 |
Creators | Öllinger, Rupert |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds