Return to search

Wechselwirkung von Radionukliden mit Pflanzen: Identifizierung von Metaboliten und deren Einfluss auf Bioverfügbarkeit und Transport von Actiniden in der Umwelt

In dieser Arbeit wurde die Wechselwirkung von U(VI) und Eu(III) mit den Pflanzenzelllinien Brassica napus und Daucus carota sowie mit B. napus-Pflanzen mit verschiedenen biochemischen, systembiologischen, spektroskopischen und mikroskopischen Methoden untersucht.
Die Untersuchungen der Wechselwirkung von Uran und Europium mit den Pflanzenzelllinien (B. napus und D. carota) gaben einen umfassenden Einblick in Mobilisierungs- und Immobilisierungsprozesse auf zellulärer und molekularer Ebene. Für beide Pflanzenzelllinien konnten dabei vergleichbare Ergebnisse hinsichtlich der Immobilisierungskinetik erhalten werden. Für U(VI) und Eu(III) konnte eine Immobilisierung durch die Wechselwirkung mit den Pflanzenzellen in zeit- und konzentrationsabhängigen Bioassoziationsstudien nachgewiesen werden, welche im direkten Zusammenhang mit der Aufnahme in die Pflanze und einem potentiellen Eintrag in die Nahrungskette steht. Die dabei beobachteten Veränderungen die Zellvitalität betreffend zeigen, dass sowohl Uran als auch Europium Stressreaktionen in den Zellen auslösen.
Für U(VI) wurde für die Wechselwirkung mit beiden Pflanzenzelllinien bei einer Ausgangskonzentration von 20 µM U(VI) ein einstufiger Bioassoziationsprozess nachgewiesen. Eine Immobilisierung konnte auch für die – unter Umweltbedingungen hohe – Konzentration von 200 µM U(VI) beobachtet werden, wobei die Lokalisation von Uran in den Pflanzenzellen belegte, dass dieses aktiv in die Zellen aufgenommen wurde und sich dort in großen Mengen ablagerte. Außerdem wurde basierend auf dem Nachweis einer Kolokalisation von Uran und Phosphor auf eine Anbindung von Uran an (organische) Phosphate geschlossen, was durch XAS-Untersuchungen bestätigt werden konnte. Innerhalb der Zelle konnte die Präzipitation und erstmalig die intrazelluläre Sorption von Uran an Biomembranen nachgewiesen werden. Die Kinetik der Immobilisierung zeigte jedoch für diese hohe U(VI)-Konzentration im Vergleich zu 20 µM U(VI) einen anderen Verlauf, welcher neben der Immobilisierung auch Phasen der (Re-)Mobilisierung von Uran aufwies. Für D. carota äußerte sich diese verringerte Immobilisierung in einer verlangsamten Bioassoziation zu Beginn der Exposition. Für B. napus konnte für längere Expositionszeiten eine Re-Mobilisierung von Uran beobachtet werden, was einen mehrstufigen Bioassoziationsprozess zur Folge hatte, bei welchem bis zu 51% des zuvor immobilisierten Urans wieder in Lösung freigesetzt wurde. Diese Phasen der erhöhten Mobilität von Uran standen dabei in zeitlicher Übereinstimmung mit dem Auftreten einer neuen U(VI)-Spezies in den Nährmedien. Insgesamt wurden in beiden Systemen chemisch identische oder sehr ähnliche U(VI)-Spezies identifiziert. Mittels HPLC, NMR und TRLFS gelang die Identifizierung der U(VI)-Metabolitspezies als Uranyl(VI)-Malat-2:2-Komplex. Es wurde der Beleg erbracht, dass Malat, welches von den Zellen gebildet wird, in das Nährmedium freigesetzt wird und U(VI) komplexiert, was eine geringere Immobilisierung von Uran zur Folge hat. Weiterhin konnte belegt werden, dass das Phänomen der Mobilisierung von Uran für beide Pflanzenzelllinien auftritt und mit der Entstehung eines U(VI)-Malat-Komplexes in den Nährmedien in Verbindung steht. Mittels Proteomics als Methode der Systembiologie konnten Hinweise auf eine Anreicherung von Malat innerhalb des Citratzyklus in Folge der U(VI)-Exposition erhalten werden, die diese Hypothese zusätzlich untermauern. Aufbauend auf den Untersuchungen dieser Arbeit kann geschlussfolgert werden, dass die Immobilisierung von Uran durch die Komplexierung mit freigesetzten Pflanzenzellmetaboliten verringert werden kann. Diese (Re-)Mobilisierungsprozesse müssen für eine zuverlässige Modellierung des Radionuklidtransports in der Umwelt berücksichtigt werden, da mit einer erhöhten Bioverfügbarkeit von Radionukliden ein größeres Umweltrisiko einhergehen kann.
Die Bioassoziation von Eu(III) mit beiden Pflanzenzelllinien zeigte sowohl für die niedrigere (30 µM) als auch für die höhere (200 µM) Ausgangskonzentration einen einstufigen Prozess, der zur Immobilisierung von Europium innerhalb von 24 bis 48 h führte. Mittels TRLFS war keine Bildung einer (die Mobilität erhöhenden) Eu(III)-Metabolitspezies nachweisbar, wie es für U(VI) der Fall war. Die Lokalisation von Europium in den Zellen belegte auch hier die Akkumulation, wobei sich jedoch ein anderes Bild der Immobilisierung verglichen mit Uran bot. Für Europium konnte keine vermehrte Anbindung an Biomembranen beobachtet werden und Präzipitate traten nur in geringem Maße auf. Dafür zeigten sich lokale Ablagerungen von europium- und phosphorhaltigen Agglomeraten in Zellwand und Cytoplasma, wobei für Letzteres eine Anbindung an Proteinstrukturen (Komplexierung von Europium) wahrscheinlich ist. Damit ist für Europium, ebenso wie für Uran, eine Anbindung an (organische) Phosphate in der Zelle anzunehmen.
Es konnten für die Wechselwirkung von U(VI) und Eu(III) mit beiden Pflanzenzelllinien die Teilprozesse der Biosorption, Bioakkumulation, Biokomplexierung und Biopräzipitation nachgewiesen werden, welche simultan und innerhalb von 24 h Exposition in den Zellen ablaufen. Für Uran gibt es zudem spektroskopische Hinweise auf eine Bioreduktion über einen Ein-Elektronen-Transfer. Untersuchungen zur Aufnahme von Uran und Europium in D. carota-Zellen lieferten zudem Hinweise, dass Calcium-Ionenkanäle einen möglichen Weg für die Aufnahme von Uran in die Zellen darstellen. Proteomics-Analysen von U(VI)-exponierten B. napus-Zellen zeigten außerdem eine deutliche Überexpression von Calcium-transportierenden ATPasen, die ebenfalls auf einen Zusammenhang zwischen Uranaufnahme und Calcium-Homöostase hindeuten.
Die Untersuchung der Wechselwirkung von Uran und Europium mit B. napus-Pflanzen zeigte ebenso wie die Studien mit Suspensionszellkulturen eine Immobilisierung beider Metalle, wobei die Aufnahme und Translokation von Uran und Europium in den Pflanzen einen potentiellen Eintrittspfad dieser in die Nahrungskette darstellen. Mithilfe der chemischen Mikroskopie konnten in B. napus-Wurzeln nach 72 h Exposition mit 200 µM Eu(III) drei Eu(III)-Spezies ortsaufgelöst bestimmt werden, die eine Aufnahme und Komplexierung von Eu(III) in die Pflanze belegen.
Insgesamt konnte durch die Anwendung verschiedener hochmoderner Methoden in dieser Arbeit ein umfassender Einblick in die Wechselwirkungen von U(VI) und Eu(III) als Analogon für Am(III) und Cm(III) mit Pflanzen auf zellulärer und molekularer Ebene gegeben werden, der zu einem tieferen Prozessverständnis beiträgt. Neben spektroskopischen, mikroskopischen und biochemischen Methoden lieferten auch systembiologische Untersuchungen mittels Proteomics Einblicke in Veränderungen der Proteinexpression der Zellen. Abschließend lässt sich sagen, dass Uran und Europium durch die Interaktion mit Pflanzen(zellen) immobilisiert werden, jedoch dabei die Art und Weise der Wechselwirkung stark von dem jeweiligen Metall abhängt. Die Untersuchungen dieser Arbeit zeigen, dass Pflanzen im Falle einer Freisetzung von Radionukliden aus einem Endlager und eines Eintritts in die Biosphäre über das Grundwasser eine entscheidende Rolle für deren Migrationsverhalten in der Umwelt spielen können. Gleichzeitig geht mit einer Immobilisierung der Radionuklide ein Eintrag in die Nahrungskette und damit ein potentielles Gesundheitsrisiko einher. Das generierte Prozessverständnis liefert erheblich tiefere Einblicke in die Wechselwirkungen zwischen Radionukliden und Pflanzen, als es die bisher für die Risikoabschätzung eines Endlagers herangezogenen Transferfaktoren ermöglichen. Es dient der Weiterentwicklung biogeochemischer und radioökologischer Modelle, die wiederum zuverlässigere Dosisabschätzungen erlauben. Um die Interaktion mit anderen sechswertigen Actiniden wie PuO22+ und NpO22+ einschätzen zu können und damit zuverlässige Sicherheitsbeurteilungen zu ermöglichen, sind zukünftig vergleichbare Untersuchungen auch mit diesen, für die Radiotoxizität in Endlagern relevanten, Vertretern durchzuführen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:82050
Date09 November 2022
CreatorsJessat, Jenny
ContributorsStumpf, Thorsten, Panak, Petra, Sachs, Susanne, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds