Return to search

Modeling Patterns of Transactions after Companies Implementation of Getswish AB’s Payment Service / Modellering av transaktionsmönster efter företagsimplementering av Getswish AB:s betalningstjänst

This thesis is a case study in collaboration with the company Getswish AB. GetswishAB provides the mobile application and payment service Swish with the purpose ofdelivering smooth money transfers for individuals and companies in Sweden. About80 percent of the Swedish population are connected to Swish, and the majority seethe service as an apparent part of everyday life. This work studies a small part of alltransactions that take place daily between individuals and companies. Specifically, thispaper examines which factors affect the Swish transaction amount (TA) to companieswithin five different industries. The five industries studied are: Sports, leisure,and entertainment activities; Restaurant, catering, and bar activities; Retail trade,except for motor vehicles and motorcycles; Trade and repair of motor vehicles andmotorcycles; and Telecommunications. In combination with descriptive analysis andseasonality studies, a multiple linear regression model is used to evaluate patternsin the amount transferred to companies within the various industries. The responsevariable is the daily aggregated TA and the seven responding regressors examined are:i) The number of employees of the company, ii) The revenue of the company, iii) Thedate for registration to Swish service for companies, iv) The age of the customers, v) Thegender of the customers, vi) The number of transactions, and vii) The transaction date.The estimated parameters for each regressor are studied to evaluate correlations withthe TA. This thesis states that it is possible to construct a model from the regressorsanalyzed, which can predict the amount with an explanation degree of above 85% forfour of the five industries. The model constructed for the motor vehicle industry nevergives satisfactory results and must be further investigated to conclude. / Detta examensarbete är en fallstudie i samarbete med företaget GetSwish AB.GetSwish AB tillhandahåller mobilapplikationen och betaltjänsten Swish, vars syfteär att leverera smidig pengaöverföring för privatpersoner och företag i Sverige. Idagär cirka 80 procent av Sveriges befolkning anslutna till Swish och majoriteten sertjänsten som en självklar del av vardagen. Detta arbete kommer dock endast fokuserapå en liten del av alla transaktioner som dagligen sker mellan privatpersoner ochföretag. Specifikt undersöker denna rapport vilka faktorer som påverkar Swishstransaktionsbelopp till företag inom fem olika branscher. De fem branschernasom studeras är: Sport-, fritids- och nöjesverksamhet; Restaurang-, catering ochbarverksamhet; Detaljhandel utom med motorfordon och motorcyklar; Handelsamt reparation av motorfordon och motorcyklar; och Telekommunikation. Ikombination med en deskriptiv analys och säsongsstudier skapades en multipel linjärregressionsmodell för att utvärdera mönster i transaktionsbeloppet från kund tillföretag inom de olika branscherna. Responsvariablen är det dagliga aggregeradebeloppet och de förklarande variablerna som undersöktes var: antalet anställda,omsättning, datum för registrering till Swish för företag, kundernas ålder och könsamt antal transaktioner och transaktionsdatum. De skattade parametrarna förvarje regressor studerades för att utvärdera magnitud samt positiva eller negativakorrelationer med beloppet. Denna rapport visar att det är möjligt att konstrueraen modell från de analyserade regressorerna som kan förutsäga beloppet med enförklaringsgrad på över 85% för fyra av de fem branscherna och kan användas föratt förutspå beloppen på de dagliga transaktionerna. Modellen som konstruerats förfordonsindustrin gav aldrig tillfredsställande resultat och bör undersökas vidare innanslutsatser dras.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-326774
Date January 2022
CreatorsAmaya Scott, Jakob, Skålberg, Amanda
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2022:299

Page generated in 0.0026 seconds