Up to date, it is unclear how Choice-Based Conjoint (CBC) models perform in terms of forecasting (external) real world aggregate shop data. In this contribution, we measure the performance of a Latent Class CBC model - not with an experimental holdout sample - but with aggregate real world scanning data. We find that the CBC model does not accurately predict real world market shares. In order to improve the forecasting performance, we propose a correction scheme based on external scanner data. Our analysis based on 8 brands shows that the use of the proposed correction vector improves the performance measure considerably. (author's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_1ad |
Date | January 2000 |
Creators | Natter, Martin, Feurstein, Markus |
Publisher | SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://epub.wu.ac.at/1372/ |
Page generated in 0.0017 seconds