Return to search

Satellite Microwave Remote Sensing of Boreal-Arctic Land Surface State and Meteorology from AMSR-E

High latitude regions are undergoing significant climate-related change and represent an integral component of the Earths climate system. Near-surface vapor pressure deficit, soil temperature, and soil moisture are essential state variables for monitoring high latitude climate and estimating the response of terrestrial ecosystems to climate change. Methods are developed and evaluated to retrieve surface soil temperature, daily maximum/minimum air temperature, and land surface wetness information from the EOS Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite for eight Boreal forest and Arctic tundra biophysical monitoring sites across Alaska and northern Canada. Daily vapor pressure deficit is determined by employing AMSR-E daily maximum/minimum air temperature retrievals. The seasonal pattern of microwave emission and relative accuracy of the estimated land surface state are influenced strongly by landscape properties including the presence of open water, vegetation type and seasonal phenology, snow cover and freeze-thaw transitions. Daily maximum/minimum air temperature is retrieved with RMSEs of 2.88 K and 2.31 K, respectively. Soil temperature is retrieved with RMSE of 3.1 K. Vapor pressure deficit (VPD) is retrieved to within 427.9 Pa using thermal information from AMSR-E. AMSR-E thermal information imparted 27% of the overall error in VPD estimation with the remaining error attributable to underlying algorithm assumptions. Land surface wetness information derived from AMSR-E corresponded with soil moisture observations and simple soil moisture models at locations with tundra, grassland, and mixed -forest/cropland land covers (r = 0.49 to r = 0.76). AMSR-E 6.9 GHz land surface wetness showed little correspondence to soil moisture observation or model estimates at locations with > 20% open water and > 5 m2 m-2 Leaf Area Index, despite efforts to remove the impact of open water and vegetation biomass. Additional information on open water fraction and vegetation phenology derived from AMSR-E 6.9 GHz corresponds well with independent satellite observations from MODIS, Sea-Winds, and JERS-1. The techniques and interpretations of high-latitude terrestrial brightness temperature signatures presented in this investigation will likely prove useful for future passive microwave missions and ecosystem modeling.

Identiferoai:union.ndltd.org:MONTANA/oai:etd.lib.umt.edu:etd-12192007-163830
Date18 January 2008
CreatorsJones, Lucas Alan
ContributorsJohn S. Kimball, Steven W. Running, Anna E. Klene
PublisherThe University of Montana
Source SetsUniversity of Montana Missoula
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.umt.edu/theses/available/etd-12192007-163830/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Montana or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0014 seconds