Return to search

Automatic prediction of emotions induced by movies / Reconnaissance automatique des émotions induites par les films

Jamais les films n’ont été aussi facilement accessibles aux spectateurs qui peuvent profiter de leur potentiel presque sans limite à susciter des émotions. Savoir à l’avance les émotions qu’un film est susceptible d’induire à ses spectateurs pourrait donc aider à améliorer la précision des systèmes de distribution de contenus, d’indexation ou même de synthèse des vidéos. Cependant, le transfert de cette expertise aux ordinateurs est une tâche complexe, en partie due à la nature subjective des émotions. Cette thèse est donc dédiée à la détection automatique des émotions induites par les films, basée sur les propriétés intrinsèques du signal audiovisuel. Pour s’atteler à cette tâche, une base de données de vidéos annotées selon les émotions induites aux spectateurs est nécessaire. Cependant, les bases de données existantes ne sont pas publiques à cause de problèmes de droit d’auteur ou sont de taille restreinte. Pour répondre à ce besoin spécifique, cette thèse présente le développement de la base de données LIRIS-ACCEDE. Cette base a trois avantages principaux: (1) elle utilise des films sous licence Creative Commons et peut donc être partagée sans enfreindre le droit d’auteur, (2) elle est composée de 9800 extraits vidéos de bonne qualité qui proviennent de 160 films et courts métrages, et (3) les 9800 extraits ont été classés selon les axes de “valence” et “arousal” induits grâce un protocole de comparaisons par paires mis en place sur un site de crowdsourcing. L’accord inter-annotateurs élevé reflète la cohérence des annotations malgré la forte différence culturelle parmi les annotateurs. Trois autres expériences sont également présentées dans cette thèse. Premièrement, des scores émotionnels ont été collectés pour un sous-ensemble de vidéos de la base LIRIS-ACCEDE dans le but de faire une validation croisée des classements obtenus via crowdsourcing. Les scores émotionnels ont aussi rendu possible l’apprentissage d’un processus gaussien par régression, modélisant le bruit lié aux annotations, afin de convertir tous les rangs liés aux vidéos de la base LIRIS-ACCEDE en scores émotionnels définis dans l’espace 2D valence-arousal. Deuxièmement, des annotations continues pour 30 films ont été collectées dans le but de créer des modèles algorithmiques temporellement fiables. Enfin, une dernière expérience a été réalisée dans le but de mesurer de façon continue des données physiologiques sur des participants regardant les 30 films utilisés lors de l’expérience précédente. La corrélation entre les annotations physiologiques et les scores continus renforce la validité des résultats de ces expériences. Equipée d’une base de données, cette thèse présente un modèle algorithmique afin d’estimer les émotions induites par les films. Le système utilise à son avantage les récentes avancées dans le domaine de l’apprentissage profond et prend en compte la relation entre des scènes consécutives. Le système est composé de deux réseaux de neurones convolutionnels ajustés. L’un est dédié à la modalité visuelle et utilise en entrée des versions recadrées des principales frames des segments vidéos, alors que l’autre est dédié à la modalité audio grâce à l’utilisation de spectrogrammes audio. Les activations de la dernière couche entièrement connectée de chaque réseau sont concaténées pour nourrir un réseau de neurones récurrent utilisant des neurones spécifiques appelés “Long-Short-Term- Memory” qui permettent l’apprentissage des dépendances temporelles entre des segments vidéo successifs. La performance obtenue par le modèle est comparée à celle d’un modèle basique similaire à l’état de l’art et montre des résultats très prometteurs mais qui reflètent la complexité de telles tâches. En effet, la prédiction automatique des émotions induites par les films est donc toujours une tâche très difficile qui est loin d’être complètement résolue. / Never before have movies been as easily accessible to viewers, who can enjoy anywhere the almost unlimited potential of movies for inducing emotions. Thus, knowing in advance the emotions that a movie is likely to elicit to its viewers could help to improve the accuracy of content delivery, video indexing or even summarization. However, transferring this expertise to computers is a complex task due in part to the subjective nature of emotions. The present thesis work is dedicated to the automatic prediction of emotions induced by movies based on the intrinsic properties of the audiovisual signal. To computationally deal with this problem, a video dataset annotated along the emotions induced to viewers is needed. However, existing datasets are not public due to copyright issues or are of a very limited size and content diversity. To answer to this specific need, this thesis addresses the development of the LIRIS-ACCEDE dataset. The advantages of this dataset are threefold: (1) it is based on movies under Creative Commons licenses and thus can be shared without infringing copyright, (2) it is composed of 9,800 good quality video excerpts with a large content diversity extracted from 160 feature films and short films, and (3) the 9,800 excerpts have been ranked through a pair-wise video comparison protocol along the induced valence and arousal axes using crowdsourcing. The high inter-annotator agreement reflects that annotations are fully consistent, despite the large diversity of raters’ cultural backgrounds. Three other experiments are also introduced in this thesis. First, affective ratings were collected for a subset of the LIRIS-ACCEDE dataset in order to cross-validate the crowdsourced annotations. The affective ratings made also possible the learning of Gaussian Processes for Regression, modeling the noisiness from measurements, to map the whole ranked LIRIS-ACCEDE dataset into the 2D valence-arousal affective space. Second, continuous ratings for 30 movies were collected in order develop temporally relevant computational models. Finally, a last experiment was performed in order to collect continuous physiological measurements for the 30 movies used in the second experiment. The correlation between both modalities strengthens the validity of the results of the experiments. Armed with a dataset, this thesis presents a computational model to infer the emotions induced by movies. The framework builds on the recent advances in deep learning and takes into account the relationship between consecutive scenes. It is composed of two fine-tuned Convolutional Neural Networks. One is dedicated to the visual modality and uses as input crops of key frames extracted from video segments, while the second one is dedicated to the audio modality through the use of audio spectrograms. The activations of the last fully connected layer of both networks are conv catenated to feed a Long Short-Term Memory Recurrent Neural Network to learn the dependencies between the consecutive video segments. The performance obtained by the model is compared to the performance of a baseline similar to previous work and shows very promising results but reflects the complexity of such tasks. Indeed, the automatic prediction of emotions induced by movies is still a very challenging task which is far from being solved.

Identiferoai:union.ndltd.org:theses.fr/2015ECDL0035
Date12 November 2015
CreatorsBaveye, Yoann
ContributorsEcully, Ecole centrale de Lyon, Chen, Liming, Dellandréa, Emmanuel, Chamaret, Christel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0179 seconds