Inicialmente projetadas para processamento de gráficos, as placas gráficas (GPUs) evoluíram para um coprocessador paralelo de propósito geral de alto desempenho. Devido ao enorme potencial que oferecem para as diversas áreas de pesquisa e comerciais, a fabricante NVIDIA destaca-se pelo pioneirismo ao lançar a arquitetura CUDA (compatível com várias de suas placas), um ambiente capaz de tirar proveito do poder computacional aliado à maior facilidade de programação. Na tentativa de aproveitar toda a capacidade da GPU, algumas práticas devem ser seguidas. Uma delas consiste em manter o hardware o mais ocupado possível. Este trabalho propõe uma ferramenta prática e extensível que auxilie o programador a escolher a melhor configuração para que este objetivo seja alcançado. / Initially designed for graphical processing, the graphic cards (GPUs) evolved to a high performance general purpose parallel coprocessor. Due to huge potencial that graphic cards offer to several research and commercial areas, NVIDIA was the pioneer lauching of CUDA architecture (compatible with their several cards), an environment that take advantage of computacional power combined with an easier programming. In an attempt to make use of all capacity of GPU, some practices must be followed. One of them is to maximizes hardware utilization. This work proposes a practical and extensible tool that helps the programmer to choose the best configuration and achieve this goal.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25042012-212956 |
Date | 20 September 2011 |
Creators | Ikeda, Patricia Akemi |
Contributors | Lejbman, Alfredo Goldman Vel |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0016 seconds