[pt] Desde que foram propostos como método de otimização, os
algoritmos
evolutivos têm sido usados com sucesso para resolver
problemas complexos
nas mais diversas áreas como, por exemplo, o projeto
automático de circuitos
e equipamentos, planejamento de tarefas, engenharia de
software e mineração
de dados, entre tantos outros. Este sucesso se deve, entre
outras coisas, ao fato
desta classe de algoritmos não necessitar de formulações
matemáticas rigorosas
a respeito do problema que se deseja otimizar, além de
oferecer um alto grau
de paralelismo no processo de busca. No entanto, alguns
problemas são computacionalmente
custosos no que diz respeito à avaliação das soluções
durante o
processo de busca, tornando a otimização por algoritmos
evolutivos um processo
lento para situações onde se deseja uma resposta rápida do
algoritmo (como por
exemplo, problemas de otimização online). Diversas
maneiras de se contornar
este problema, através da aceleração da convergência para
boas soluções, foram
propostas, entre as quais destacam-se os Algoritmos
Culturais e os Algoritmos
Co-Evolutivos. No entanto, estes algoritmos ainda têm a
necessidade de avaliar
muitas soluções a cada etapa do processo de otimização. Em
problemas onde
esta avaliação é computacionalmente custosa, a otimização
pode levar um tempo
proibitivo para alcançar soluções ótimas. Este trabalho
propõe um novo algoritmo
evolutivo para problemas de otimização numérica (Algoritmo
Evolutivo
com Inspiração Quântica usando Representação Real - AEIQ-
R), inspirado no
conceito de múltiplos universos da física quântica, que
permite realizar o processo
de otimização com um menor número de avaliações de
soluções. O trabalho
apresenta a modelagem deste algoritmo para a solução de
problemas benchmark
de otimização numérica, assim como no treinamento de redes
neurais
recorrentes em problemas de aprendizado supervisionado de
séries temporais e
em aprendizado por reforço em tarefas de controle. Os
resultados obtidos demonstram
a eficiência desse algoritmo na solução destes tipos de
problemas. / [en] Since they were proposed as an optimization method, the
evolutionary algorithms
have been successfully used for solving complex problems
in several
areas such as, for example, the automatic design of
electronic circuits and equipments,
task planning and scheduling, software engineering and
data mining,
among many others. This success is due, among many other
things, to the fact
that this class of algorithms does not need rigorous
mathematical formulations
regarding the problem to be optimized, and also because it
offers a high degree of
parallelism in the search process. However, some problems
are computationally
intensive when it concerns the evaluation of solutions
during the search process,
making the optimization by evolutionary algorithms a slow
process for situations
where a quick response from the algorithm is desired (for
instance, in online optimization
problems). Several ways to overcome this problem, by
speeding up
convergence time, were proposed, including Cultural
Algorithms and Coevolutionary
Algorithms. However, these algorithms still have the need
to evaluate
many solutions on each step of the optimization process.
In problems where
this evaluation is computationally expensive, the
optimization might take a prohibitive
time to reach optimal solutions. This work proposes a new
evolutionary
algorithm for numerical optimization problems (Quantum-
Inspired Evolutionary
Algorithm for Problems based on Numerical Representation -
QIEA-R),
inspired in the concept of quantum superposition, which
allows the optimization
process to be carried on with a smaller number of
evaluations. The work presents
the modelling for this algorithm for solving benchmark
numerical optimization
problems, and for training recurrent neural networks in
supervised learning and
reinforcement learning. The results show the good
performance of this algorithm
in solving these kinds of problems.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:10640 |
Date | 25 September 2007 |
Creators | ANDRE VARGAS ABS DA CRUZ |
Contributors | MARCO AURÉLIO CAVALCANTI PACHECO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0024 seconds