Il est difficile de quantifier les dissipations d'énergie se produisant dans les ouvrages lors d'un séisme de manière réaliste, en particulier dans le cas de structures en béton armé. Ceci s'explique par la diversité des sources de dissipations. Classiquement, elles sont introduites dans la modélisation des structures sous la forme d'un amortissement global peu physique. Le problème qui se pose est de savoir comment prendre en compte l'amortissement de manière plus physique. Ces travaux visent à apporter des éléments de réponse à cette problématique. Pour cela, deux objectifs ont été poursuivis : le premier consiste à qualifier et quantifier expérimentalement les sources d'amortissement dues au béton, le second vise à développer une méthode de calcul, peu couteuse et permettant de modéliser le comportement global mais aussi l'amortissement de manière réaliste. Une campagne d'essais de flexion 3 points alternée a été réalisée afin de quantifier les mécanismes contribuant à l'amortissement. Cette campagne est effectuée sur des poutres saines mais également sur des poutres pré-endommagées. L'analyse des expériences a permis d’identifier différentes grandeurs physiques influençant l’amortissement. Cette campagne a été modélisée à l'aide de trois lois de comportements, une loi s'est révélée pertinente. La loi de comportement ainsi identifiée a permis de développer une modélisation simplifiée, en vue d'études probabilistes. Cette dernière est fondée sur une loi de comportement simple couplée à une actualisation de l'amortissement visqueux. Trois actualisations de l'amortissement ont été développées et confrontées à une campagne d'essais sismiques mono axiaux sur un poteau. / It is hard to determine the energy dissipation that occurs during an earthquake, especially where reinforced concrete structures are concerned. The reason for this is the many different causes of energy dissipation, these dissipations typically creep into the essential pattern of the structures as a uniform, slight damping, and which is heavily quantify. The challenge is therefore to ascertain how to carry out damping in a way that relies more on the laws of physics themselves. This study aims at bringing some clarifications to this problem. In order to achieve this, two objectives were targeted during the case study: the first consisted in experimentally qualifying and quantifying the sources of damping in concrete, the second aims at developing a method which model both the overall behaviour and the damping in a realistic way with low computational costs. Reverse 3-point bending tests were carried out to determine and quantify the mechanisms responsible for damping. The tests were carried out on sound beams, and also on pre-damaged beams. It was possible to relate the damping to the damage, the intensity of the load and the erosion of the crack surfaces. These tests were modeled using three physical constitutive laws, one proved to be relevant. The behaviour law thus identified allowed us to develop a simplified model to be used during probabilistic assessments. This model is based on a simple constitutive law, coupled with the updating of viscous damping. It is carried out according to the evolutions of the mechanical properties of the structure and the load. Three updates of the damping were developed and subjected to a serie of mono axial seismic tests on a column.
Identifer | oai:union.ndltd.org:theses.fr/2013DENS0037 |
Date | 07 October 2013 |
Creators | Crambuer, Romain |
Contributors | Cachan, Ecole normale supérieure, Ragueneau, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds