A computer-aided design scheme for both man-made and natural runoff systems is presented. The model uses linear programming to solve Muskingum routing equations through a drainage system, and provides design information through post-optimality (sensitivity) analysis. With the objective of minimizing the peak outflow from the system and using hydrograph ordinates as the decision variables, the output of the linear programming analysis shows the extent that each flow ordinate at every node in the network influences the peak flow at some downstream location. This information can aid the user in speeding up the design process to arrive at an efficient design - i.e., one which either minimizes construction costs or reduces the potential risk of flood damage. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/25077 |
Date | January 1985 |
Creators | Battle, Timothy P. |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0095 seconds