Sustainable pavement management implies maintaining acceptable condition of pavements while also considering the tradeoff between cost, environmental impacts and social impacts of pavement investments. Typical pavement management practices only consider economic considerations, and environmental mitigation techniques are employed after the selection of the maintenance action is complete. This dissertation presents a series of papers that demonstrate the impact of decision making on the environmental impact of the pavements both at the project and network levels of pavement management. An analysis was conducted of two models that relate pavement properties to vehicle rolling resistance and fuel consumption. These models were used, along with other tools to evaluate the impact of including the use phase of a pavement into pavement lifecycle assessments. A detailed project level lifecycle assessment was conducted, and it was found that the vehicles on the pavement during the use phase contribute the most to environmental pollutants by a significant margin over other phases of the lifecycle. Thus, relatively small improvements in the factors which contribute to rolling resistance may significantly influence the environmental impacts of the pavement. Building on this, a network level lifecycle assessment method was proposed to probabilistically quantify energy consumption for a given set of expected maintenance actions. It was shown that, although maintenance actions require a certain amount of energy consumption, this energy can be offset by improved road conditions leading to reduced rolling resistance. However, this tradeoff of reduced energy consumption also includes increased costs for a given network condition. In other words, the lowest energy consumption values did not tend to fall along the line defined by minimizing the cost divided by the pavement condition. In order to demonstrate how this tradeoff should be addressed, a novel decision analysis framework was developed, and implemented on a specific pavement network. Finally, a survey of transportation professionals was evaluated to determine their optimal points within the solution space defined by minimizing costs and energy consumption while maximizing pavement condition. It was found that the solution space could be greatly reduced by implementing their responses using the proposed decision analysis framework. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/64335 |
Date | 27 June 2014 |
Creators | Bryce, James Matthew |
Contributors | Civil and Environmental Engineering, Flintsch, Gerardo W., Sivaneswaran, Nadarajah, Hall, Ralph P., Wernz, Christian, Murray-Tuite, Pamela Marie |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds