Decision trees are recognized and widely used technique for processing and analyzing data. These trees are designed with typical and generally known inductive techniques (such as ID3, C4.5, C5.0, CART, CHAID, MARS). Predictive power of created trees is not always perfect and they often provide a room for improvement. Induction of trees with difficult criterias is hard and sometime impossible. In this paper we will deal with decision trees, namely their creation. We use the mentioned room for improvement by metaheuristic, genetic algorithms, which is used in all types of optimalization. The work also includes an implementation of a new proposed algorithm in the form of plug-in into Weka environment. A comparison of the proposed method for induction of decision trees with known algorithm C4.5 is an integral part of this thesis. Powered by TCPDF (www.tcpdf.org)
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:350916 |
Date | January 2015 |
Creators | Šurín, Lukáš |
Contributors | Mráz, František, Šmíd, Jakub |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds