Title: Image Deblurring in Demanding Conditions Author: Jan Kotera Department: Institute of Information Theory and Automation, Czech Academy of Sciences Supervisor: Doc. Ing. Filip Šroubek, Ph.D., DSc., Institute of Information Theory and Automation, Czech Academy of Sciences Abstract: Image deblurring is a computer vision task consisting of removing blur from image, the objective is to recover the sharp image corresponding to the blurred input. If the nature and shape of the blur is unknown and must be estimated from the input image, image deblurring is called blind and naturally presents a more difficult problem. This thesis focuses on two primary topics related to blind image deblurring. In the first part we work with the standard image deblurring based on the common convolution blur model and present a method of increasing robustness of the deblur- ring to phenomena violating the linear acquisition model, such as for example inten- sity clipping caused by sensor saturation in overexposed pixels. If not properly taken care of, these effects significantly decrease accuracy of the blur estimation and visual quality of the restored image. Rather than tailoring the deblurring method explicitly for each particular type of acquisition model violation we present a general approach based on flexible automatic...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:437543 |
Date | January 2020 |
Creators | Kotera, Jan |
Contributors | Šroubek, Filip, Portilla, Javier, Jiřík, Radovan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds