Hydraulic conductivity fields (K) and degradation rate constants (a) are
commonly used in predicting the fate and transport of reactive contaminants. The
natural heterogeneity in aquifer porous materials and its effect on hydrological
parameters such as K and a has to be accounted for by using an appropriate stochastic
approach.
The spatial distribution of K and its correlation with a were examined. Random
fields of K having prescribed mean, variance, and correlation lengths were generated
using the HYDRO_GEN method. Transport simulations were conducted for an
ensemble of two-dimensionally heterogeneous aquifers. Both positive and negative
correlations of K and a were considered.
The soluteÂs remaining mass in both the positive and negative correlation
scenarios was found to be, on average, within a small range. Concentration profiles for
a positive K-a correlation displayed a more uniform behavior of the contaminated
plume, compared to a more variable spreading in the negatively correlated cases.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/3987 |
Date | 16 August 2006 |
Creators | Fadel, Ziad Joseph |
Contributors | Cahill, Anthony, Cunningham, Jeffrey A. |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 1210298 bytes, electronic, application/pdf, born digital |
Page generated in 0.002 seconds