La photonique au silicium est une technologie émergente considérée comme l'une des solutions clés pour les interconnexions sur puce de génération future, offrant plusieurs avantages potentiels tels qu'une faible latence de transmission et une bande passante élevée. Cependant, elle reste confrontée à des défis en matière d'efficacité énergétique. Différentes topologies, layout et architectures offrent diverses options d'interconnexion. Ceci conduit à une grande variation des pertes optiques, qui est l'un des facteurs prédominants dans la consommation d'énergie. De plus, les composants photoniques au silicium sont très sensibles aux variations de température. Sous une activité de puces donnée, ceci conduit à une réduction de l’efficacité des lasers et à une dérive des longueurs d'onde des composants optiques, ce qui entraîne un «Bit Error Ratio (BER)» plus élevé et réduit par conséquent l'efficacité énergétique des interconnexions optiques. Dans cette thèse, nous travaillons sur des méthodologies de conception pour les interconnexions photoniques sur silicium économes-en-énergie et prenant en compte la topologie / le layout, la variation thermique et l'architecture. / Silicon photonics is an emerging technology considered as one of the key solutions for future generation on-chip interconnects, providing several prospective advantages such as low transmission latency and high bandwidth. However, it still encounters challenges in energy efficiency. Different topologies, physical layouts, and architectures provide various interconnect options for on-chip communication. This leads to a large variation in optical losses, which is one of the predominant factors in power consumption. In addition, silicon photonic devices are highly sensitive to temperature variation. Under a given chip activity, this leads to a lower laser efficiency and a drift of wavelengths of optical devices (on-chip lasers and microring resonators (MRs)), which in turn results in a higher Bit Error Ratio (BER) and consequently reduces the energy efficiency of optical interconnects. In this thesis, we work on design methodologies for energy-efficient silicon photonic interconnects on chip related to topology/layout, thermal variation, and architecture.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEC059 |
Date | 09 December 2016 |
Creators | Li, Hui |
Contributors | Lyon, O'Connor, Ian, Le Beux, Sébastien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds