Return to search

Solar Micro Inverter

Indiana University-Purdue University Indianapolis (IUPUI) / The existing topologies of solar micro inverter use a number of stages before the DC input voltage can be converted to AC output voltage. These stages may contain one or more power converters. It may also contain a diode rectifier, transformer and filter. The number of active and passive components is very high. In this thesis, the design of a new solar micro inverter is proposed. This new micro inverter consists of a new single switch inverter which is obtained by modifying the already existing single ended primary inductor (SEPIC) DC-DC converter. This new inverter is capable of generating pure sinusoidal waveform from DC input voltage. The design and operation of the new inverter are studied in detail. This new inverter works with a controller to produce any kind of output waveform. The inverter is found to have four different modes of operation. The new inverter is modeled using state space averaging. The system is a fourth order system which is non-linear due to the inherent switching involved in the circuit. The system is linearized around an operating point to study the system as a linear system. The control to output transfer function of the inverter is found to be non-minimum phase. The transfer functions are studied using root locus. From the control perspective, the presence of right half zero makes the design of the controller structure complicated. The PV cell is modeled using the cell equations in MATLAB. A maximum power point tracking (MPPT) technique is implemented to make sure the output power of the PV cell is always maximum which allows full utilization of the power from the PV cell. The perturb and observe (P&O) algorithm is the simplest and is used here. The use of this new inverter eliminates the various stages involved in the conventional solar micro inverter. Simulation and experimental results carried out on the setup validate the proposed structure of inverter.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/5914
Date January 2014
CreatorsHegde, Shweta
ContributorsIzadian, Afshin, Rizkalla, Maher E., Li, Lingxi, King, Brian
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds