Campus Area Networks (CANs) are a subset of enterprise networks, comprised of a network core connecting multiple Local Area Networks (LANs) across a college campus. Traditionally, hosts connect to the CAN via a single point of attachment; however, the past decade has seen the employment of mobile computing rise dramatically. Mobile devices must obtain new Internet Protocol (IP) addresses at each LAN as they migrate, wasting address space and disrupting host services. To prevent these issues, modern CANs should support IP mobility: allowing devices to keep a single IP address as they migrate between LANs with low-latency handoffs. Traditional approaches to mobility may be difficult to deploy and often lead to inefficient routing, but Software-Defined Networking (SDN) provides an intriguing alternative. This thesis identifies necessary requirements for a software-defined IP mobility system and then proposes one such system, the Software-Defined Mobile Campus Area Network (SD-MCAN) architecture. SD-MCAN employs an OpenFlow-based hybrid, label-switched routing scheme to efficiently route traffic flows between mobile hosts on the CAN. The proposed architecture is then implemented as an application on the existing POX controller and evaluated on virtual and hardware testbeds. Experimental results show that SD-MCAN can process handoffs with less than 90 ms latency, suggesting that the system can support data-intensive services on mobile host devices. Finally, the POX prototype is open-sourced to aid in future research.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3085 |
Date | 01 December 2017 |
Creators | Calabrigo, Adam Chase |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0065 seconds