Introdução: O número de estudos relacionados à Síndrome Metabólica (SM) vem aumentando nos últimos anos, muitas vezes motivados pelo aumento do número de casos de sobrepeso/obesidade e diabetes Tipo II levando ao desenvolvimento de doenças cardiovasculares e, como consequência, infarto agudo do miocárdio e AVC, dentre outros desfechos desfavoráveis. A SM é uma doença multifatorial composta de cinco características, porém, para que um indivíduo seja diagnosticado com ela, possuir pelo menos três dessas características torna-se condição suficiente. Essas cinco características são: Obesidade visceral, caracterizada pelo aumento da circunferência da cintura, Glicemia de jejum elevada, Triglicérides aumentado, HDL-colesterol reduzido, Pressão Arterial aumentada. Objetivo: Estabelecer a rede de associações entre os fenótipos que compõem a Síndrome Metabólica através do aprendizado de estruturas de dependência, decompor a rede em componentes de correlação genética e ambiental e avaliar o efeito de ajustes por covariáveis e por variantes genéticas exclusivamente relacionadas à cada um dos fenótipos da rede. Material e Métodos: A amostra do estudo corresponderá a 79 famílias da cidade mineira de Baependi, composta por 1666 indivíduos. O aprendizado de estruturas de redes será feito por meio da Teoria de Grafos e Modelos de Equações Estruturais envolvendo o modelo linear misto poligênico para determinar as relações de dependência entre os fenótipos que compõem a Síndrome Metabólica / Introduction: The number of studies related to Metabolic Syndrome (MetS) has been increasing in the last years, encouraged by the increase on the overweight / obesity and Type II Diabetes cases, leading to the development of cardiovascular disease and, therefore, acute myocardial infarction and stroke, and others unfavorable outcomes. MetS is a multifactorial disease containing five characteristics, however, for an individual to be diagnosed with MetS, he/she may have at least three of them. These characteristics are: Truncal Obesity, characterized by increasing on the waist circumference, increasing on Fasting Blood Glucose, increasing on Triglycerides, decreasing on HDL cholesterol and increasing on Blood Pressure. Aims: Establish the best association network between MetS phenotypes through structured dependency learning between phenotypes considering genetic variants exclusively related to each phenotype. Materials and Methods: The study sample is composed of 79 families, 1666 individuals of a city in a rural area of Brazil, called Beapendi. Structured learning will use graph theory and Structural Equations Models to establish the dependency relations between MetS phenotypes
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-04072017-105320 |
Date | 26 June 2017 |
Creators | Lilian Skilnik Wilk |
Contributors | Gizelton Pereira Alencar, Alexandre Dias Porto Chiavegatto Filho, Alexandre da Costa Pereira, David Schlesinger |
Publisher | Universidade de São Paulo, Saúde Pública, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds