Return to search

Neural network analysis of sparse datasets ?? an application to the fracture system in folds of the Lisburne Formation, northeastern Alaska

Neural networks (NNs) are widely used to investigate the relationship among variables in complex multivariate problems. In cases of limited data, the network behavior strongly depends on factors such as the choice of network activation function and network initial weights. In this study, I investigated the use of neural networks for multivariate analysis in the case of limited data.
The analysis shows that special attention should be paid when building and using NNs in cases of limited data. The linear activation function at the output nodes outperforms the sigmoidal and Gaussian functions. I found that combining network predictions gives less biased predictions and allows for the assessment of the prediction variability.
The NN results, along with conventional statistical analysis, were used to examine the effects of folding, bed thickness, structural position, and lithology on the fracture properties distributions in the Lisburne Formation, folded and exposed in the northeastern Brooks Range of Alaska. Fracture data from five folds, representing different degrees of folding, were analyzed. In addition, I modeled the fracture system using the discrete fracture network approach and investigated the effects of fracture properties on the flow conductance of the system.
For the Lisburne data, two major fracture sets striking north/south and east/west were studied. Results of the NNs analysis suggest that fracture spacing in both sets is similar and weakly affected by folding and that stratigraphic position and lithology have a strong effect on fracture spacing. Folding, however, has a significant effect on fracture length. In open folds, fracture lengths in both sets have similar averages and variances. As the folds tighten, both the east/west and north/south fracture lengths increase by a factor of 2 or 3 and become more variable. In tight folds, fracture length in the north/south direction is significantly larger than in the east/west direction. The difference in length between the two fracture sets creates a strong anisotropy in the reservoir. Given the same fracture density in both sets, the set with the greater length plays an important role for fluid flow, not only for flow along its principal direction but also in the orthogonal direction.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2593
Date01 November 2005
CreatorsBui, Thang Dinh
ContributorsJensen, Jerry L.
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Format2598415 bytes, electronic, application/pdf, born digital

Page generated in 0.0021 seconds