The current age is characterised by unprecedented information growth, whether it is by amount or complexity. Most of it is available in digital form so we can analyze it using cluster analysis. We have tried to classify the documents from 20 Newsgroups collection in terms of their content only. The aim was to asses available clustering methods in a variety of applications. After the transformation into binary vector representation we performed several experiments and measured the values of entropy, purity and time of execution in application CLUTO. For a small number of clusters the best results offered the direct method (generally hierarchical method), but for more it was the repeated bisection (divisive). Agglomerative method proved not to be suitable. Using simulation we estimated the optimal number of clusters to be 10. For this solution we described in detail features of each cluster using repeated bisection method and i2 criterion function. In the future focus should be set on realisation of binary clustering with advantage of programming languages like Perl or C++. Results of this work might be of interest to web search engine developers and electronic catalogue administrators.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:17157 |
Date | January 2009 |
Creators | Ševčík, Radim |
Contributors | Řezanková, Hana, Svátek, Vojtěch |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds