Quantum Cascade Lasers are a novel semiconductor light source with the unique property of wavelength tunability over the mid-infrared and terahertz range of frequencies. Advances since their first demonstration in 1994 have led to highly efficient designs capable of continuous room temperature operation. In lieu of increased advances in laser core efficiency, power scaling with broad area quantum cascade lasers has demonstrated enhanced continuous power. This initial work is used as a starting point for continuing advances in average brightness of quantum cascade lasers. A figure of merit calculation reliably predicts to within parts in thousands the qualitative beam profile of continuously driven and high duty cycle devices. Further, a model is developed to project performance not only in continuously driven conditions, but also in variable duty cycles. This is combined with the figure of merit calculation to guide designs for optimized average brightness.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1619 |
Date | 01 January 2020 |
Creators | Suttinger, Matthew |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations, 2020- |
Page generated in 0.002 seconds