Transition edge sensors are the detectors of choice for a wide range of applications; from dark matter search, neutrino search, to cosmic radiation detection from near infrared to millimeter wavelengths. We are developing transition edge sensors using superconducting iridium thin films and we are proposing their use for future dark matter and neutrino search experiments. Our Ir films are deposited using an radio frequency (RF) magnetron sputtering and photolithographic techniques and measured using an adiabatic refrigerator capable of reaching temperatures of a few tens of mK. This thesis presents a detailed description of superconducting iridium thin films from the fabrication process to the characterization of the film properties at room temperature and low temperature. Alternative options for the bias circuit used to read out the TES signals will be discussed, we are proposing the use of RLC resonant circuits and transformers instead of SQUIDS.
Identifer | oai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1189 |
Date | 22 December 2008 |
Creators | Bogorin, Daniela Florentina |
Publisher | Scholarly Repository |
Source Sets | University of Miami |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Dissertations |
Page generated in 0.0018 seconds