Return to search

Bending Moments and Deformations of Conical Shell on Euler-Winkler Elastic Foundation.

<p> Various analytical methods for studying the behaviour of shallow conical shells on Euler-Winkler elastic foundation are presented. </p> <p> To account for the nature of concrete and the geometric properties of the shallow conical shell, Poisson's ratio and certain radial and circumferential deformations of the middle surface are neglected in deriving the basic differential equation. Analytical methods employed in the solution of this shell problem are the GECKELER and asymptotic types of approximations. </p> <p> The presentations of various methods of analysis are made for a representative case of dimensions and loadings of the conical shell to make them as applicable as possible to the cases of thin conical shell commonly encountered in industry. </p> <p> The shell structure studied is a tank in the form of a rotationally symmetrical cylindrical shell supported by a shallow conical shell foundation. The construction joint between the conical shell and the cylindrical shell is either monolithic or hinged. </p> <p> The analytical results of this water tank supported on Euler-Winkler elastic foundation are compared with the corresponding findings of W. Flügge, who assumed a uniform soil bearing pressure acting on the conical shell structure. </p> The method of analysis which possesses obvious advantages over the other methods studied is selected to examine the effect of different elastic stiffness coefficients of the soil. The validity of simplifying the soil bearing pressure to a uniform distribution by most designers can consequently be studied by comparing it to the bearing pressures of an ideal elastic soil which is postulated to react to its deformation like a bed of independent elastic springs. </p> / Thesis / Master of Engineering (ME)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/17453
Date January 1981
CreatorsChung, Kit Man Peter
ContributorsOravas, Gunhard AE., Civil Engineering and Engineering Mechanics
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.0023 seconds