Return to search

Performance Evaluation of Treating Optoelectronic Industrial Wastewaters by a Simultaneous Electrocoagulation/Electrofiltration Process Using Multi-Tubular TiO2/Al2O3 Composite Membranes

Water is essential for life as well as industrial growth. Therefore, this research is mainly to explore the treatment capacity of LCD (Liguid Crystal Display) industrial wastewater recycling by a simultaneous electrocoagulation/electrofiltration (EC/EF) process using laboratory-prepared multi-tubular TiO2/Al2O3 composite membranes.
First, tubular membrane supports of Al2O3 were prepared by the extrusion method. Then the slip composed of nanoscale TiO2 (prepared by sol-gel process) was applied on the aforementioned tubular membrane supports by the dip-coating method, followed by sintering to obtain tubular TiO2/Al2O3 composite membranes. Then, two types of LCD industrial wastewaters (designated TFT-LCD wastewater and STN-LCD wastewater, respectively) from different LCD fabrication plants were treated by EC/EF process using TiO2/Al2O3 composite membranes. Moreover, the permeate qualities were evaluated under the recirculation-mode operation. In addition, the effects of different operating parameters (i.e., electric field strength, trans-membrane pressure, and crossflow velocity) on membrane flux and permeate quality were evaluated. Relations of the water quality and the different operation modes (i.e., the recirculation mode, flow-through mode, and secondary treatment mode) were also discussed. Finally, the effects of changing the backwash time and backwash cycle on membrane flux were investigated.
In the recirculation mode, both kinds of wastewater achieved a satisfactory organics and anion removal. An average of about 90¢H of COD (Chemical Oxygen Demand) and TKN (Total Kjeldahl Nitrogen) could be removed. For anions (i.e., NO3¡Ð, NO2¡Ð, Cl¡Ð and SO42¡Ð), their removal efficiencies were all over 90%. Furthermore, TOC (Total Organic Carbon) and turbidity also had removal efficiencies of over 98%. When the operation mode was changed from the recirculation mode to flow-through mode, the changes of permeate quality were not obvious. But the cumulative quantity of permeate of the flow-through mode was greater than that of the recirculation mode. As for the experimental result of the secondary treatment mode, the permeate qualities were found to be improved. In this case, an average removal of over 95% of NO3¡Ð, NO2¡Ð, Cl¡Ð, and SO42¡Ð could be obtained.
According to experimental results shown above, the treated water could be recycled and reused as the cooling tower make-up water if its pH and conductivity values were reduced. However, these problems could be easily resolved by proper adjustments of pH. Overall speaking, the tubular TiO2/Al2O3 composite membranes and simultaneous EC/EF treatment module employed in this work are capable of treating LCD industrial wastewater for the purpose of reclamation.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0827108-135822
Date27 August 2008
CreatorsYen, Chia-Heng
ContributorsChia-Yuan Chang, Gordon C. C. Yang, Kuo-Jen Hwang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0827108-135822
Rightswithheld, Copyright information available at source archive

Page generated in 0.0082 seconds