We construct a new calculus of boundary value problems with the transmission property on a non-compact smooth manifold with boundary and conical exits to infinity. The symbols are classical both in covariables and variables. The operators are determined by principal symbol tuples modulo operators of lower orders and weights (such remainders are compact in weighted Sobolev spaces). We develop the concept of ellipticity, construct parametrices within the algebra and obtain the Fredholm property. For the existence of Shapiro-Lopatinskij elliptic boundary conditions to a given elliptic operator we prove an analogue of the Atiyah-Bott condition.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2572 |
Date | January 2000 |
Creators | Kapanadze, David, Schulze, Bert-Wolfgang |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Preprint |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0018 seconds