Return to search

Ocean energy assessment : an integrated methodology

The huge natural energy resources available in the world’s oceans are attracting increasing commercial and political interest. In order to evaluate the status and the degree of acceptability of future Ocean Energy (OE) schemes, it was considered important to develop an Integrated Assessment Methodology (IAM) for ascertaining the relative merits of the competing OE devices being proposed. Initial studies included the gathering of information on the present status of development of the ocean energy systems on wave, OTEC and tidal schemes with the challenges faced for their commercial application. In order to develop the IAM, studies were undertaken for the development and standardization of the assessment tools focussing on: • Life Cycle Assessment (LCA) on emission characteristics. • Energy Accounting (EA) studies. • Environmental Impact Assessment (EIA) over different environmental issues. • Resource captures aspects. • Defining economy evaluation indices. The IAM developed from such studies comprised of four interrelated well defined tasks and six assessment tools. The tasks included the identification of the modus operandi on data collection to be followed (from industry) for assessing respective OE devices, and also advancing relevant guidelines as to the safety standards to be followed, for their deployment at suitable sites. The IAM as developed and validated from case studies in ascertaining relative merits of competing OE devices included: suitable site selection aspects with scope for resource utilisation capability, safety factors for survivability, scope for addressing global warming & energy accounting, the environmental impact assessment both qualitatively and quantitatively on different environmental issues, and the economic benefits achievable. Some of the new ideas and concepts which were also discovered during the development of the IAM, and considered useful to both industry and researchers are given below: • Relative Product Cost (RPC) ratio concept- introduced in making an economic evaluation. This is considered helpful in sensitivity analysis and making design improvements (hybridising etc) for the cost reduction of OE devices. This index thus helps in making feasibility studies on R&D efforts, where the capital cost requirement data and life span of the device is not well defined in the primary stages of development. • Determination of the threshold limit value of the barrage constant - considered useful in determining the efficacy of the planning process. The concept ascertained the relative efficiency achieved for various barrage proposals globally. It could also be applied to suggest the revisions required for certain barrage proposals and also found useful in predicting the basin area of undefined barrage proposal for achieving economic viability. • Estimations made on the future possibility of revenue earnings from the by-products of various OTEC types, including the scope of chemical hubs from grazing type OTEC plants. • Determination of breakeven point- on cost versus life span of wave and OTEC devices studied, which is useful in designing optimum life of the concerned devices. The above stated multi-criterion assessment methodology, IAM, was extended leading to the development of a single criterion model for ascertaining sustainability percent achievable from an OE device and termed IAMs. The IAMs was developed identifying 7 Sustainability Development Indices (SDI) using some the tools of the IAM. A sustainability scale of 0-100 was also developed, attributing a Sustainability Development Load Score (SDLS) percentage distribution pattern over each SDIs, depending on their relative importance in achieving sustainability. The total sum of sustainability development (SD) gained from each SDI gave the IAMs (for the concerned device), indicating the total sustainable percentage achieved. The above IAMs developed, could be applied in ranking OE devices alongside the unsustainable coal power station. A mathematical model of estimating the IAMs was formulated, in order to ascertain the viability to the sustainable development of any energy device. The instruments of IAM and IAMs which have been developed would be helpful to the OE industry in ascertaining the degree of acceptability of their product. In addition it would also provide guidelines for their safe deployment by assessing the relative merits of competing devices. Furthermore, IAM and IAMs would be helpful to researchers undertaking feasibility studies on R&D efforts for material development research, ‘hybridization studies’ (as also new innovations), cost reduction, the performance improvement of respective devices, and any economic gains. With future advancements in OE systems and the availability of field data from large scale commercial applications, the specific values/data of the IAM & IAMs may be refined, but the logic of the models developed in this research would remain the same.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:633634
Date January 2011
CreatorsBanerjee, S.
PublisherCoventry University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://curve.coventry.ac.uk/open/items/16196d0d-e671-489a-ba71-f20cdb6c8df3/1

Page generated in 0.1203 seconds