An analytical model for the specific gas detection of oxygen, carbon dioxide, and water vapor using zirconia amperometric oxygen sensors has been developed. Sensors of this type have been designed, fabricated, and tested using planar ceramic technology. Furthermore, an experimental setup has been designed and constructed for sensor characterization. This testbed can accurately control gas partial pressures as well as the total system pressure over a wide range of flow rates. Extensive effort has been put into design and construction of this testbed to ensure accurate scientific measurements. Special attention has been paid to ensuring that the apparatus is leak-tight from air to ensure accurate measurements at low oxygen partial pressures. Results of the experimentation for oxygen detection as well as the detection of carbon dioxide and water vapor are presented. The effects of electronic conduction in the zirconia electrolyte at low oxygen partial pressures are examined. Possible applications of the sensor, as well as suggestions for further research are discussed.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/278662 |
Date | January 1998 |
Creators | Blanchard, Jeffrey Allen, 1974- |
Contributors | Sridhar, K. R. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0017 seconds