Return to search

Applications of artificial neural networks (ANNs) in several different materials research fields

In materials science, the traditional methodological framework is the identification of the composition-processing-structure-property causal pathways that link hierarchical structure to properties. However, all the properties of materials can be derived ultimately from structure and bonding, and so the properties of a material are interrelated to varying degrees. The work presented in this thesis, employed artificial neural networks (ANNs) to explore the correlations of different material properties with several examples in different fields. Those including 1) to verify and quantify known correlations between physical parameters and solid solubility of alloy systems, which were first discovered by Hume-Rothery in the 1930s. 2) To explore unknown crossproperty correlations without investigating complicated structure-property relationships, which is exemplified by i) predicting structural stability of perovskites from bond-valence based tolerance factors tBV, and predicting formability of perovskites by using A-O and B-O bond distances; ii) correlating polarizability with other properties, such as first ionization potential, melting point, heat of vaporization and specific heat capacity. 3) In the process of discovering unanticipated relationships between combination of properties of materials, ANNs were also found to be useful for highlighting unusual data points in handbooks, tables and databases that deserve to have their veracity inspected. By applying this method, massive errors in handbooks were found, and a systematic, intelligent and potentially automatic method to detect errors in handbooks is thus developed. Through presenting these four distinct examples from three aspects of ANN capability, different ways that ANNs can contribute to progress in materials science has been explored. These approaches are novel and deserve to be pursued as part of the newer methodologies that are beginning to underpin material research.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:509697
Date January 2010
CreatorsZhang, Yiming
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/362

Page generated in 0.0123 seconds