Les réseaux Ethernet commuté full-duplex constituent des solutions intéressantes pour des applications industrielles. Mais le non-déterminisme d’un commutateur IEEE 802.1d, fait que l’analyse pire cas de délai de flux critiques est encore un problème ouvert. Plusieurs méthodes ont été proposées pour obtenir des bornes supérieures des délais de communication sur des réseaux Ethernet commuté full duplex temps réels, faisant l’hypothèse que le trafic en entrée du réseau peut être borné. Le problème principal reste le pessimisme introduit par la méthode de calcul de cette borne supérieure du délai. Ces méthodes considèrent que tous les flux transmis sur le réseau sont indépendants. Ce qui est vrai pour les flux émis par des nœuds sources différents car il n’existe pas, dans le cas général, d’horloge globale permettant de synchroniser les flux. Mais pour les flux émis par un même nœud source, il est possible de faire l’hypothèse d’une synchronisation locale de ces flux. Une telle hypothèse permet de bâtir un modèle plus précis des flux et en conséquence élimine des scénarios impossibles qui augmentent le pessimisme du calcul. Le sujet principal de cette thèse est d’étudier comment des flux périodiques synchronisés par des offsets peuvent être gérés dans le calcul des bornes supérieures des délais sur un réseau Ethernet commuté temps-réel. Dans un premier temps, il s’agit de présenter l’impact des contraintes d’offsets sur le calcul des bornes supérieures des délais de bout en bout. Il s’agit ensuite de présenter comment intégrer ces contraintes d’offsets dans les approches de calcul basées sur le Network Calculus et la méthode des Trajectoires. Une méthode Calcul Réseau modifiée et une méthode Trajectoires modifiée sont alors développées et les performances obtenues sont comparées. Le réseau avionique AFDX (Avionics Full-Duplex Switched Ethernet) est pris comme exemple d’un réseau Ethernet commuté full-duplex. Une configuration AFDX industrielle avec un millier de flux est présentée. Cette configuration industrielle est alors évaluée à l’aide des deux approches, selon un choix d’allocation d’offsets donné. De plus, différents algorithmes d’allocation des offsets sont testés sur cette configuration industrielle, pour trouver un algorithme d’allocation quasi-optimal. Une analyse de pessimisme des bornes supérieures calculées est alors proposée. Cette analyse est basée sur l’approche des trajectoires (rendue optimiste) qui permet de calculer une sous-approximation du délai pire-cas. La différence entre la borne supérieure du délai (calculée par une méthode donnée) et la sous-approximation du délai pire cas donne une borne supérieure du pessimisme de la méthode. Cette analyse fournit des résultats intéressants sur le pessimisme des approches Calcul Réseau et méthode des Trajectoires. La dernière partie de la thèse porte sur une architecture de réseau temps réel hétérogène obtenue par connexion de réseaux CAN via des ponts sur un réseau fédérateur de type Ethernet commuté. Deux approches, une basée sur les composants et l’autre sur les Trajectoires sont proposées pour permettre une analyse des délais pire-cas sur un tel réseau. La capacité de calcul d’une borne supérieure des délais pire-cas dans le contexte d’une architecture hétérogène est intéressante pour les domaines industriels. / Full-duplex switched Ethernet is a promising candidate for interconnecting real-time industrial applications. But due to IEEE 802.1d indeterminism, the worst-case delay analysis of critical flows supported by such a network is still an open problem. Several methods have been proposed for upper-bounding communication delays on a real-time switched Ethernet network, assuming that the incoming traffic can be upper bounded. The main problem remaining is to assess the tightness, i.e. the pessimism, of the method calculating this upper bound on the communication delay. These methods consider that all flows transmitted over the network are independent. This is true for flows emitted by different source nodes since, in general, there is no global clock synchronizing them. But the flows emitted by the same source node are local synchronized. Such an assumption helps to build a more precise flow model that eliminates some impossible communication scenarios which lead to a pessimistic delay upper bounds. The core of this thesis is to study how local periodic flows synchronized with offsets can be handled when computing delay upper-bounds on a real-time switched Ethernet. In a first step, the impact of these offsets on the delay upper-bound computation is illustrated. Then, the integration of offsets in the Network Calculus and the Trajectory approaches is introduced. Therefore, a modified Network Calculus approach and a modified Trajectory approach are developed whose performances are compared on an Avionics Full-DupleX switched Ethernet (AFDX) industrial configuration with one thousand of flows. It has been shown that, in the context of this AFDX configuration, the Trajectory approach leads to slightly tighter end-to-end delay upper bounds than the ones of the Network Calculus approach. But offsets of local flows have to be chosen. Different offset assignment algorithms are then investigated on the AFDX industrial configuration. A near-optimal assignment can be exhibited. Next, a pessimism analysis of the computed upper-bounds is proposed. This analysis is based on the Trajectory approach (made optimistic) which computes an under-estimation of the worst-case delay. The difference between the upper-bound (computed by a given method) and the under-estimation of the worst-case delay gives an upper-bound of the pessimism of the method. This analysis gives interesting comparison results on the Network Calculus and the Trajectory approaches pessimism. The last part of the thesis, deals with a real-time heterogeneous network architecture where CAN buses are interconnected through a switched Ethernet backbone using dedicated bridges. Two approaches, the component-based approach and the Trajectory approach, are developed to conduct a worst-case delay analysis for such a network. Clearly, the ability to compute end-to-end delays upper-bounds in the context of heterogeneous network architecture is promising for industrial domains.
Identifer | oai:union.ndltd.org:theses.fr/2013INPT0065 |
Date | 19 September 2013 |
Creators | Li, Xiaoting |
Contributors | Toulouse, INPT, Fraboul, Christian, Scharbarg, Jean-Luc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds