In this thesis, I investigate the nature of geometric knowledge and its relationship to spatial intuition. My goal is to rehabilitate the Kantian view that Euclid's geometry is a mathematical practice, which is grounded in spatial intuition, yet, nevertheless, yields a type of a priori knowledge about the structure of visual space. I argue for this by showing that Euclid's geometry allows us to derive knowledge from idealized visual objects, i.e., idealized diagrams by means of non-formal logical inferences. By developing such an account of Euclid's geometry, I complete the "standard view" that geometry is either a formal system (pure geometry) or an empirical science (applied geometry), which was developed mainly by the logical positivists and which is currently accepted by many mathematicians and philosophers. My thesis is divided into three parts. I use Hans Reichenbach's arguments against Kant and Edmund Husserl's genetic approach to the concept of space as a means of arguing that the "standard view" has to be supplemented by a concept of a geometry whose propositions have genuine spatial content. I then develop a coherent interpretation of Euclid's method by investigating both the subject matter of Euclid's geometry and the nature of geometric inferences. In the final part of this thesis, I modify Husserl's phenomenological analysis of the constitution of visual space in order to define a concept of spatial intuition that allows me not only to explain how Euclid's practice is grounded in visual space, but also to account for the apriority of its results.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.82897 |
Date | January 2002 |
Creators | Jagnow, René |
Contributors | Hallett, Michael (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Philosophy.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001984712, proquestno: AAINQ88493, Theses scanned by UMI/ProQuest. |
Page generated in 0.0018 seconds