Return to search

Fast-response rotating brushless exciters for improved stability of synchronous generators

The Norwegian Network Code FIKS from the Norwegian Transmission System Operator (TSO) Statnett, states that synchronous generators ≥ 25 MVA must have a static excitation system. It also includes requirements on the step time response and the available field winding ceiling voltage of the excitation system. An improved brushless excitation system is in operation in some pilot power plants. A rotating thyristor bridge is controlled via Bluetooth. The step time response is as fast as conventional static excitation systems. However, a ceiling voltage factor of 2 requires the thyristor bridge to operate at firing angles about 60 degrees. High torque pulsations, low power factor and low utilization of the exciter is the end result. New power electronic interfaces on the shaft results in a betterutilization of the designed exciter and improves the mechanical performance as well as the controllability of the generator field winding. Permanent magnet rotating exciters increase the field forcing strength of the synchronous generator, yielding improved transient stability (Fault Ride-Through req.). Brushless exciters also reduces regular maintenance of the generator. The thesis includes experiments on a state of the art synchronous generator test setup including constructed PM exciter and different power electronic solutions. Some investigations has been done on industrial power plants as well.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-292835
Date January 2016
CreatorsNøland, Jonas Kristiansen
PublisherUppsala universitet, Elektricitetslära, Uppsala : Institutionen för teknikvetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUURIE / Uppsala universitet, Institutitionen för teknikvetenskaper, 0349-8352 ; 347-16L

Page generated in 0.0021 seconds