This study deals with solidification and melting of some typical encapsulated ice thermal energy storage geometries. Using ANSYS GAMBIT and FLUENT 6.0 software, HTF fluid motion past encapsulated water (ice) geometries, varying HTF flow rates and inlet temperatures are analyzed. The main source of irreversibility was from entropy generation accompanying phase change, although viscous dissipation losses were included. Energy efficiencies were well over 99% for all cases, while exergy efficiencies ranged from 70% to 92%. By far, the most influential variable was the inlet HTF temperature; higher efficiencies resulted from inlet HTF temperatures closer to the solidification temperature of water. / UOIT
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOSHDU.10155/10 |
Date | 01 July 2008 |
Creators | MacPhee, David |
Contributors | Dincer, Ibrahim |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds